1
|
Liu R, Liu P, Luo Y, Fan W, Fan B. Metformin reduced the alkaline resistance of Enterococcus faecalis against calcium hydroxide via Man-PTS EII: in vitro and in vivo studies. Clin Oral Investig 2024; 28:520. [PMID: 39254714 DOI: 10.1007/s00784-024-05909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES The mannose phosphotransferase system (Man-PTS) plays crucial roles in the adaptive metabolic activity of Enterococcus faecalis (E. faecalis) in adverse environments. The aim of this study was to evaluate the role of Man-PTS in the alkaline resistance of E. faecalis against calcium hydroxide (CH) and the effect of metformin (Met) on the alkaline resistance of E. faecalis to CH. MATERIALS AND METHODS The regulatory role of Man-PTS EII in the alkaline resistance of E. faecalis was firstly investigated using a wild-type highly alkaline-resistant E. faecalis XS 003, standard ATCC 29212 and Man-PTS EIID gene deficient (△mptD) and overexpressing (+mptD) strains of E. faecalis. RNA sequencing of Met-treated E. faecalis was performed to further validate the effect of Met on Man-PTS. The effect of Met on CH resistance of E. faecalis was verified by evaluating the survival, membrane potential and permeability, intracellular pH and ATP, and the expression of Man-PTS EII and membrane transporter-related genes of E. faecalis. The effect of Met on the ability of CH to remove E. faecalis biofilm on the dentin surface was also tested. The in vivo therapeutic effect of Met plus CH (CHM) was further investigated in a rat apical periodontitis model induced by E. faecalis XS 003. RESULTS Man-PTS EII significantly promoted the survival ability of E. faecalis in CH and enhanced its resistance to CH. The inhibition of Man-PTS EII by Met resulted in reduced alkaline resistance of E. faecalis in the presence of CH, while also enhancing the antimicrobial properties of CH against E. faecalis biofilm on dentin. Additionally, Met plus CH showed the synergistically promoted intra-canal E. faecalis infection control and healing of periapical lesion in rats. CONCLUSIONS Met could significantly reduce the alkaline resistance of E. faecalis against CH through the modulation of Man-PTS EII, and improved the antibacterial effect of CH against E. faecalis infection both in vitro and in vivo. CLINICAL RELEVANCE Met could significantly enhance the ability of CH to control E. faecalis infection through reducing the alkaline resistance of E. faecalis.
Collapse
Affiliation(s)
- Runze Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Pei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Yi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Bing Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
2
|
Yang S, Meng X, Zhen Y, Baima Q, Wang Y, Jiang X, Xu Z. Strategies and mechanisms targeting Enterococcus faecalis biofilms associated with endodontic infections: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1433313. [PMID: 39091674 PMCID: PMC11291369 DOI: 10.3389/fcimb.2024.1433313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Enterococcus faecalis is one of the main microorganisms that infects root canals, ranking among the most prevalent microorganisms associated with endodontic treatment failure. Given its pervasive presence in persistent endodontic infections, the successful elimination of Enterococcus faecalis is crucial for effective endodontic treatment and retreatment. Furthermore, Enterococcus faecalis can form biofilms - defense structures that microbes use to fight environmental threats. These biofilms confer resistance against host immune system attacks and antibiotic interventions. Consequently, the presence of biofilms poses a significant challenge in the complete eradication of Enterococcus faecalis and its associated disease. In response, numerous scholars have discovered promising outcomes in addressing Enterococcus faecalis biofilms within root canals and undertaken endeavors to explore more efficacious approaches in combating these biofilms. This study provides a comprehensive review of strategies and mechanisms for the removal of Enterococcus faecalis biofilms.
Collapse
Affiliation(s)
- Shipeng Yang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuqi Zhen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Quzhen Baima
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhibo Xu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Liu C, Li Y, Li Y, Li Z, Han G. Synergistic antibacterial effect of ginsenoside Rh2 and calcium hydroxide on Enterococcus faecalis. Odontology 2024:10.1007/s10266-024-00951-z. [PMID: 38762821 DOI: 10.1007/s10266-024-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Treatment of root canal infections becomes more challenging due to the extremely high tolerance of Enterococcus faecalis (E. faecalis) to calcium hydroxide (Ca(OH)2). Ginsenoside is a Chinese herbal extract that has been proven to have antimicrobial properties and synergistic activities. And this study evaluated the antibacterial activity of ginsenoside Rh2 in combination with Ca(OH)2 against E. faecalis and its preliminary mechanism of action. Broth microdilution method, checkerboard dilution method, time-inhibition curve, drug resistance assays, scanning electron microscopy, and biofilm inhibition and removal assays indicated that Rh2 in combination with Ca(OH)2 exhibited potent antibacterial activity against E. faecalis. Rh2 exerted significant in vitro antibacterial activity against E. faecalis, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL and minimum bactericidal concentration (MBC) of 6.25 μg/mL, and significantly enhanced the susceptibility of E. faecalis to Ca(OH)2 (FICI = 0.5). Furthermore, cell membrane permeability assays, surface hydrophobicity assays, ATPase activity assays, and intra-biofilm extracellular polysaccharides (EPS) assays revealed that Rh2 and Ca(OH)2 synergistically inhibit bacteria mainly by increasing membrane permeability. Ultimately, cytotoxicity assays showed that Rh2 exhibited only low toxicity, the half maximal inhibitory concentration (IC50) of Rh2 was 19.75 μg/mL. This study confirmed the synergistic antibacterial activities of Rh2 and Ca(OH)2 against E. faecalis. Our findings indicate that the Rh2 and Ca(OH)2 combination may be a promising alternative approach to treating root canal infections.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, People's Republic of China
| | - Yang Li
- Key Laboratory of Molecular Enzyme Engineering, Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, People's Republic of China.
| |
Collapse
|
4
|
Purwasena IA, Fitri DK, Putri DM, Endro H, Zakaria MN. Lipopeptide biosurfactant as a potential root canal irrigation agent: Antimicrobial and anti-biofilm evaluation. J Dent 2024; 144:104961. [PMID: 38527516 DOI: 10.1016/j.jdent.2024.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVES Lipopeptide Biosurfactant (LB) is a bacteria derived compound able to reduce surface tension between water and hydrophobic substances and exhibit antimicrobial and anti-biofilm properties. This study aimed to investigate the antimicrobial and anti-biofilm effect of a Lipopeptide Biosurfactant (LB) on Enterococcus faecalis, and its potential use in root canal treatment, either as a standalone irrigation solution or in conjunction with sodium hypochlorite (NaOCl). METHODS LB was extracted from Bacillus clausii isolate and the dry extract was diluted in deionized water. The antimicrobial effect of LB against planktonic E. faecalis was evaluated by determining the Minimal Inhibitory Concentration (MIC50). The anti-biofilm effect was evaluated by Minimal Biofilm Inhibitory Concentration (MBIC50) and Minimal Biofilm Eradication Concentration (MBEC50) assays on biofilm grown on dentin specimen surface. To evaluate the effectiveness of LB as a single irrigation solution and as a pre-irrigation prior to NaOCl, live and dead bacterial cells were quantified using Confocal Laser Scanning Microscopy (CLSM), and cell biomass was assessed. RESULTS LB exhibited an MIC50 and MBIC50 of 100 ppm, with an MBEC50 of 1000 ppm, resulting in 52.94 % biofilm inhibition and 60.95 % biofilm eradication on dentin specimens. The effectiveness was concentration-dependent, at 500 ppm, LB demonstrated comparable antimicrobial efficacy to 2.5 % NaOCl. Pre-irrigation with LB resulted in lower biofilm biomass compared to NaOCl alone. CONCLUSION Pre-irrigation with LB enhanced the antimicrobial effect when followed by NaOCl irrigation. Consequently, LB shows promise as both a standalone root canal irrigation solution and as an adjunct to NaOCl in root canal treatment. CLINICAL SIGNIFICANCE The study highlights the potential of Lipopeptide Biosurfactant (LB) as an environmentally friendly irrigation solution for root canal treatment, demonstrating potent antimicrobial and anti-biofilm properties against Enterococcus faecalis. LB exhibits concentration-dependent efficacy comparable to 2.5 % NaOCl and can be used as a standalone irrigation solution or in conjunction with NaOCl.
Collapse
Affiliation(s)
- Isty Adhitya Purwasena
- School of Life Sciences and Technology, Bandung Institute of Technology. Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Dinda Kurnia Fitri
- Faculty of Dentistry, Universitas Jenderal Achmad Yani. Jl. Terusan Jenderal Sudirman PO BOX 148, Cimahi, Indonesia
| | - Destaya Mentari Putri
- School of Life Sciences and Technology, Bandung Institute of Technology. Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Hartanto Endro
- Faculty of Dentistry, Universitas Jenderal Achmad Yani. Jl. Terusan Jenderal Sudirman PO BOX 148, Cimahi, Indonesia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Amin MF, Ariwibowo T, Putri SA, Kurnia D. Moringa oleifera: A Review of the Pharmacology, Chemical Constituents, and Application for Dental Health. Pharmaceuticals (Basel) 2024; 17:142. [PMID: 38276015 PMCID: PMC10819732 DOI: 10.3390/ph17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Moringa oleifera L., commonly known as Kelor in Indonesia and miracle tree in English, has a rich history of utilization for medicinal, nutritional, and water treatment purposes dating back to ancient times. The plant is renowned for its abundance of vitamins, minerals, and various chemical constituents, making it a valuable resource. Among its notable pharmacological properties are its effectiveness as an anti-diabetic, anti-diarrheal, anti-helmintic, anti-leishmanial, anti-fungal, anti-bacterial, anti-allergic, anti-cancer, anti-inflammatory, and anti-oxidant agent. In this comprehensive review, we delve into the extensive pharmacological applications and phytochemical constituents of M. oleifera and its application in dental health.
Collapse
Affiliation(s)
- Meiny Faudah Amin
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Taufiq Ariwibowo
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| |
Collapse
|
6
|
Lv S, Fan W, Fan B. Enhanced in vitro antibacterial effect against Enterococcus faecalis by using both low-dose cetylpyridinium chloride and silver ions. BMC Oral Health 2023; 23:299. [PMID: 37198581 DOI: 10.1186/s12903-023-02972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Enterococcus faecalis (E. faecalis) is frequently isolated from root canals with failed root canal treatments. Due to the strong ability of E. faecalis to resist many often-used antimicrobials, coping with E. faecalis infections remains a challenge. The aim of this study was to investigate the synergistic antibacterial effect of low-dose cetylpyridinium chloride (CPC) and silver ions (Ag+) against E. faecalis in vitro. METHODS The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and the fractional inhibitory concentration index (FICI) were used to confirm the existence of the synergic antibacterial activity between low-dose CPC and Ag+. Colony-forming unit (CFU) counting, time-killing curve and dynamic growth curve were used to evaluate the antimicrobial effects of CPC and Ag+ combinations against planktonic E. faecalis. Four weeks biofilms were treated with drug-contained gels to determine the antimicrobial effect on biofilm-resident E.faecalis, and the integrity of E.faecalis and its biofilms were observed by FE-SEM. CCK-8 assays was used to test the cytotoxicity of CPC and Ag+ combinations on MC3T3-E1 cells. RESULTS The results confirmed the synergistic antibacterial effect of low-dose CPC and Ag+ against both planktonic and 4-week biofilm E. faecalis. After the addition of CPC, the sensitivity of both planktonic and biofilm-resident E. faecalis to Ag+ improved, and the combination showed good biocompatibility on MC3T3-E1 cells. CONCLUSIONS Low-dose CPC enhanced the antibacterial ability of Ag+ against both planktonic and biofilm E.faecalis with good biocompatibility. It may be developed into a novel and potent antibacterial agent against E.faecalis, with low toxicity for root canal disinfection or other related medical applications.
Collapse
Affiliation(s)
- Silei Lv
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
7
|
Cathro P, McCarthy P, Hoffmann P, Kidd S, Zilm P. Enterococcus faecalis V583 cell membrane protein expression to alkaline stress. FEMS Microbiol Lett 2022; 369:6679558. [PMID: 36044998 PMCID: PMC9491840 DOI: 10.1093/femsle/fnac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is able to adapt to alkaline conditions and is commonly recovered from teeth in which endodontic treatment has failed. The role that E. faecalis membrane proteins play in survival strategies to extreme alkaline conditions is unclear. We grew E. faecalis V583 in a chemostat at pH 8 and 11 at one-tenth the organism’s relative maximum growth rate. Following membrane shaving, isotope-coding protein labels were added at the peptide level to samples and then combined. The relative proportion of membrane proteins were identified using LC-ESI mass spectrometry and MaxQuant analysis. Ratios of membrane proteins were log2 transformed, with proteins deviating by more than 1 SD of the mean considered to be up- or down-regulated. A total of six proteins were up-regulated in pH 11 including: EF0669 (polysaccharide biosynthesis family); EF1927 (glycerol uptake facilitator), and EF0114 (glycosyl hydrolase). A total of five proteins were down-regulated including: EF0108 (C4-dicarboxylate transporter); EF1838 (PTS system IIC component); EF0456 (PTS system IID component); and EF0022 (PTS mannose-specific IID component). In extreme alkaline conditions, the membrane proteins of E. faecalis seem to be involved in a shift of carbohydrate metabolism from the PTS system to glycerol, which supports the formation of a protective capsule protecting the cell.
Collapse
Affiliation(s)
- Peter Cathro
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide, South Australia
| | - Peter McCarthy
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, Australia5005
| | - Stephen Kidd
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Peter Zilm
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|