1
|
La Rosa GRM, Peditto M, Venticinque A, Marcianò A, Bianchi A, Pedullà E. Advancements in guided surgical endodontics: A scoping review of case report and case series and research implications. AUST ENDOD J 2024; 50:397-408. [PMID: 38887152 DOI: 10.1111/aej.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
This scoping review examined current case series and reports on guided surgical endodontic applications in order to provide a critical platform for future research. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews guidelines were followed. A search on PubMed and Scopus yielded 611 articles, with 17 case reports and 1 series meeting inclusion criteria. Overall, guided surgery addressed anatomical complexities, with 15 articles employing static protocols and 3 dynamic. Results showed minimal iatrogenic errors and reduced chair time, with no postoperative issues reported. Within the cases described, guided endodontic surgery exhibited satisfactory results in management of anatomical complex cases. Cost-effectiveness, the need for adequate follow-up, procedure's reproducibility and accuracy, and objective measurement of the reduction in operative times and iatrogenic errors are some of the limitations in the current reports that need to be considered for planning of future experimental and cohort studies.
Collapse
Affiliation(s)
- Giusy Rita Maria La Rosa
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Matteo Peditto
- Postgraduate School of Oral Surgery, Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrea Venticinque
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Antonia Marcianò
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alberto Bianchi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Eugenio Pedullà
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Huth KC, Borkowski L, Liebermann A, Berlinghoff F, Hickel R, Schwendicke F, Reymus M. Comparing accuracy in guided endodontics: dynamic real-time navigation, static guides, and manual approaches for access cavity preparation - an in vitro study using 3D printed teeth. Clin Oral Investig 2024; 28:212. [PMID: 38480541 PMCID: PMC10937753 DOI: 10.1007/s00784-024-05603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES To assess root canal localization accuracy using a dynamic approach, surgical guides and freehand technique in vitro. MATERIALS AND METHODS Access cavities were prepared for 4 different 3D printed tooth types by 4 operators (n = 144). Deviations from the planning in angle and bur positioning were compared and operating time as well as tooth substance loss were evaluated (Kruskal-Wallis Test, ANOVA). Operating method, tooth type, and operator effects were analyzed (partial eta-squared statistic). RESULTS Angle deviation varied significantly between the operating methods (p < .0001): freehand (9.53 ± 6.36°), dynamic (2.82 ± 1.8°) and static navigation (1.12 ± 0.85°). The highest effect size was calculated for operating method (ηP²=0.524), followed by tooth type (0.364), and operator (0.08). Regarding deviation of bur base and tip localization no significant difference was found between the methods. Operating method mainly influenced both parameters (ηP²=0.471, 0.379) with minor effects of tooth type (0.157) and operator. Freehand technique caused most substance loss (p < .001), dynamic navigation least (p < .0001). Operating time was the shortest for freehand followed by static and dynamic navigation. CONCLUSIONS Guided endodontic access may aid in precise root canal localization and save tooth structure. CLINICAL RELEVANCE Although guided endodontic access preparation may require more time compared to the freehand technique, the guided navigation is more accurate and saves tooth structure.
Collapse
Affiliation(s)
- Karin Christine Huth
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany.
| | - Lukas Borkowski
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Anja Liebermann
- Department of Prosthetic Dentistry, Faculty of Medicine, University of Cologne, University Hospital Cologne, Kerpener Str. 32, 50931, Cologne, Germany
| | - Frank Berlinghoff
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Marcel Reymus
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| |
Collapse
|
3
|
Tang WL, Chao XY, Ye Z, Liu MW, Jiang H. The Use of Dynamic Navigation Systems as a Component of Digital Dentistry. J Dent Res 2024; 103:119-128. [PMID: 38098369 DOI: 10.1177/00220345231212811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
The development of dynamic navigation system (DNS) has facilitated the development of modern digital medicine. In the field of dentistry, the cutting-edge technology is garnering widespread recognition. Based on the principles of 3-dimensional visualization, virtual design, and precise motion tracking, DNS is mainly composed of a computer, a tracking system, specialized tracer instruments, and navigation software. DNS employs a workflow that begins with preoperative data acquisition and imaging data reconstruction, followed by surgical instrument calibration and spatial registration, culminating in real-time guided operations. Currently, the system has been applied in a broad spectrum of dental procedures, encompassing dental implants, oral and maxillofacial surgery (such as tooth extraction, the treatment of maxillofacial fractures, tumors, and foreign bodies, orthognathic surgery, and temporomandibular joint ankylosis surgery), intraosseous anesthesia, and endodontic treatment (including root canal therapy and endodontic surgery). These applications benefit from its enhancements in direct visualization, treatment precision, efficiency, safety, and procedural adaptability. However, the adoption of DNS is not without substantial upfront costs, required comprehensive training, additional preparatory time, and increased radiation exposure. Despite challenges, the ongoing advancements in DNS are poised to broaden its utility and substantially strengthen digital dentistry.
Collapse
Affiliation(s)
- W L Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - X Y Chao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - M W Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - H Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yang X, Zhang Y, Chen X, Huang L, Qiu X. Limitations and Management of Dynamic Navigation System for Locating Calcified Canals Failure. J Endod 2024; 50:96-105. [PMID: 37890613 DOI: 10.1016/j.joen.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023]
Abstract
Nonsurgical endodontic teeth treatment with severe pulp canal obliteration poses challenges, primarily locating canals. By combining 3-dimensional reconstruction and spatial location registration, the dynamic navigation technique uses an optical tracking system to guide the clinician to drill in real time according to the predesigned path until access to the canal is established. Several in vitro studies and case reports have shown that calcified canal location with dynamic navigation system (DNS) is more accurate and efficient, yet the technique has limitations. In 4 cases with 7 teeth, this work presents manipulation process and clinical outcomes of DNS helping in calcified canal location. We performed handpiece adaptation and elucidated the failure to locate the canals with DNS in 2 teeth, resulting in canal geometry alteration and canal path deviation. Subsequently, the more experienced endodontist located the canals by combining cone-beam computed tomographic imaging and dental operating microscopy. All patients were completely asymptomatic after treatment. At the 1-year follow-up visit, the bone healing of periapical lesions progressed well according to the periapical radiography or cone-beam computed tomographic imaging. These findings indicate that DNS is a promising technique for locating calcified canals; however, it needs to be refined before clinical use.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Lei Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Wei X, Du Y, Zhou X, Yue L, Yu Q, Hou B, Chen Z, Liang J, Chen W, Qiu L, Huang X, Meng L, Huang D, Wang X, Tian Y, Tang Z, Zhang Q, Miao L, Zhao J, Yang D, Yang J, Ling J. Expert consensus on digital guided therapy for endodontic diseases. Int J Oral Sci 2023; 15:54. [PMID: 38052782 DOI: 10.1038/s41368-023-00261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Digital guided therapy (DGT) has been advocated as a contemporary computer-aided technique for treating endodontic diseases in recent decades. The concept of DGT for endodontic diseases is categorized into static guided endodontics (SGE), necessitating a meticulously designed template, and dynamic guided endodontics (DGE), which utilizes an optical triangulation tracking system. Based on cone-beam computed tomography (CBCT) images superimposed with or without oral scan (OS) data, a virtual template is crafted through software and subsequently translated into a 3-dimensional (3D) printing for SGE, while the system guides the drilling path with a real-time navigation in DGE. DGT was reported to resolve a series of challenging endodontic cases, including teeth with pulp obliteration, teeth with anatomical abnormalities, teeth requiring retreatment, posterior teeth needing endodontic microsurgery, and tooth autotransplantation. Case reports and basic researches all demonstrate that DGT stand as a precise, time-saving, and minimally invasive approach in contrast to conventional freehand method. This expert consensus mainly introduces the case selection, general workflow, evaluation, and impact factor of DGT, which could provide an alternative working strategy in endodontic treatment.
Collapse
Affiliation(s)
- Xi Wei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua, School of Stomatology, Sun Yat-Sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua, School of Stomatology, Sun Yat-Sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yue
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qing Yu
- Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Benxiang Hou
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingping Liang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Clinical Research Center for Oral Diseases; National Center for Stomatology; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenxia Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Xiangya Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua, School of Stomatology, Sun Yat-Sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yu Tian
- Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zisheng Tang
- Department of Stomatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jin Zhao
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua, School of Stomatology, Sun Yat-Sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
6
|
Aminoshariae A, Azarpazhooh A, Fouad AF, Glickman GN, He J, Kim SG, Kishen A, Letra AM, Levin L, Setzer FC, Tay FR, Hargreaves KM. Insights into the November 2022 Issue of the JOE. J Endod 2022; 48:1349-1351. [DOI: 10.1016/j.joen.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
EDTA Combined with C-Pilot Files and Microultrasound for Root Canal Calcification: Dredging Effect and Safety Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1911448. [PMID: 36267312 PMCID: PMC9578881 DOI: 10.1155/2022/1911448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
Abstract
Objective This paper discussed the dredging effect and safety of ethylenediaminetetraacetic acid (EDTA) combined with C-pilot files and microultrasound (mUS) on root canal calcification. Methods From October 2021 to January 2022, 132 patients with calcified root canals treated in our hospital were selected as the research subjects. Among them, 64 cases who received EDTA combined with C-pilot Files and mUS plus ultrasonic instruments to dredge calcified root canals were regarded as the research group (RG), and another 68 cases given ultrasonic instruments plus C-pilot files were regarded as the control group (CG). The root canal dredging time was recorded, and the dredging success rate and total success rate of different tooth positions and calcification sites were compared between groups. The clinical efficacy was assessed 6 months after treatment. Pain severity was evaluated by the Pain Intensity Numerical Rating Scale (PI-NRS) before (T0), during (T1), and after treatment (T2). Finally, the incidence of adverse reactions within one week after treatment was counted. Results RG was observed with statistically higher success rates of root canal dredging in different tooth positions and calcified sites than CG (P < 0.05). Besides, the total effective rate of treatment was 92.19% in RG, which was also higher compared with CG, while the root canal dredging time in RG was shorter than that in CG (P < 0.05). Increased NRS scores were found in both groups at T1, and the score in RG was significantly lower compared with that in CG. At T2, both groups showed a lower PI-NRS score than T1 but higher than T0, and the score at T2 was also lower in RG as compared to CG (P < 0.05). Moreover, the reduced incidence of adverse reactions were observed in RG compared with CG (P < 0.05). Conclusions EDTA combined with C-pilot files and mUS can effectively improve the dredging success rate of root canals obstructed by calcification, shorten the dredging time, and improve patient comfort, which is an effective method for clinical dredging of calcification obstructed root canals.
Collapse
|