Zhang Y, Wang M, Saberi M, Chang E. From Big Scholarly Data to Solution-Oriented Knowledge Repository.
Front Big Data 2019;
2:38. [PMID:
33693361 PMCID:
PMC7931919 DOI:
10.3389/fdata.2019.00038]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The volume of scientific articles grow rapidly, producing a scientific basis for understanding and identifying the research problems and the state-of-the-art solutions. Despite the considerable significance of the problem-solving information, existing scholarly recommending systems lack the ability to retrieve this information from the scientific articles for generating knowledge repositories and providing problem-solving recommendations. To address this issue, this paper proposes a novel framework to build solution-oriented knowledge repositories and provide recommendations to solve given research problems. The framework consists of three modules: a semantics based information extraction module mining research problems and solutions from massive academic papers; a knowledge assessment module based on the heterogeneous bibliometric graph and a ranking algorithm; and a knowledge repository generation module to produce solution-oriented maps with recommendations. Based on the framework, a prototype scholarly solution support system is implemented. A case study is carried out in the research field of intrusion detection, and the results demonstrate the effectiveness and efficiency of the proposed method.
Collapse