1
|
Tan YL, Ju SH, Wang Q, Zhong R, Gao JH, Wang MJ, Kang YL, Xu MZ. Shuanglongjiegu pill promoted bone marrow mesenchymal stem cell osteogenic differentiation by regulating the miR-217/RUNX2 axis to activate Wnt/β-catenin pathway. J Orthop Surg Res 2024; 19:617. [PMID: 39350234 PMCID: PMC11443779 DOI: 10.1186/s13018-024-05085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
This study aimed to investigate the effects of Shuanglongjiegu pill (SLJGP) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explore its mechanism based on miR-217/RUNX2 axis. Results found that drug-containing serum of SLJGP promoted BMSCs viability with a dose-dependent effect. Under osteogenic differentiation conditions, SLJGP promoted the expression of ALP, OPN, BMP2, RUNX2, and the osteogenic differentiation ability of BMSCs. In addition, SLJGP significantly reduced miR-217 expression, and miR-217 directly targeted RUNX2. After treatment with miR-217 mimic, the promoting effects of SLJGP on proliferation and osteogenic differentiation of BMSCs were significantly inhibited. MiR-217 mimic co-treated with pcDNA-RUNX2 further confirmed that the miR-217/RUNX2 axis was involved in SLJGP to promote osteogenic differentiation of BMSCs. In addition, analysis of Wnt/β-catenin pathway protein expression showed that SLJGP activated the Wnt/β-catenin pathway through miR-217/RUNX2. In conclusion, SLJGP promoted osteogenic differentiation of BMSCs by regulating miR-217/RUNX2 axis and activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- You-Li Tan
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China.
| | - Shao-Hua Ju
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Qiang Wang
- Department of Rehabilitation of sports medicine, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Rui Zhong
- Department of Orthopedics, Affiliated Sports Hospital of Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Hai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming-Jian Wang
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Ya-Lan Kang
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Meng-Zhang Xu
- Department of Neck, Shoulder, Waist, and Leg Pain, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Ilyas S, Lee J, Lee D. Emerging Roles of Natural Compounds in Osteoporosis: Regulation, Molecular Mechanisms and Bone Regeneration. Pharmaceuticals (Basel) 2024; 17:984. [PMID: 39204089 PMCID: PMC11356869 DOI: 10.3390/ph17080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Bone health is a critical aspect of overall well-being, and disorders such as osteoporosis pose significant challenges worldwide. East Asian Herbal Medicine (EAHM), with its rich history and holistic approach, offers promising avenues for enhancing bone regeneration. In this critical review article, we analyze the intricate mechanisms through which EAHM compounds modulate bone health. We explore the interplay between osteogenesis and osteoclastogenesis, dissect signaling pathways crucial for bone remodeling and highlight EAHM anti-inflammatory effects within the bone microenvironment. Additionally, we emphasize the promotion of osteoblast viability and regulation of bone turnover markers by EAHM compounds. Epigenetic modifications emerge as a fascinating frontier where EAHM influences DNA methylation and histone modifications to orchestrate bone regeneration. Furthermore, we highlight EAHM effects on osteocytes, mesenchymal stem cells and immune cells, unraveling the holistic impact in bone tissue. Finally, we discuss future directions, including personalized medicine, combinatorial approaches with modern therapies and the integration of EAHM into evidence-based practice.
Collapse
Affiliation(s)
| | | | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.); (J.L.)
| |
Collapse
|
4
|
Zheng YH, Pan GJ, Quan Y, Zhang HY. Construction of microgravity biological knowledge graph and its applications in anti-osteoporosis drug prediction. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:64-73. [PMID: 38670654 DOI: 10.1016/j.lssr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 04/28/2024]
Abstract
Microgravity in the space environment can potentially have various negative effects on the human body, one of which is bone loss. Given the increasing frequency of human space activities, there is an urgent need to identify effective anti-osteoporosis drugs for the microgravity environment. Traditional microgravity experiments conducted in space suffer from limitations such as time-consuming procedures, high costs, and small sample sizes. In recent years, the in-silico drug discovery method has emerged as a promising strategy due to the advancements in bioinformatics and computer technology. In this study, we first collected a total of 184,915 literature articles related to microgravity and bone loss. We employed a combination of dependency path extraction and clustering techniques to extract data from the text. Afterwards, we conducted data cleaning and standardization to integrate data from several sources, including The Global Network of Biomedical Relationships (GNBR), Curated Drug-Drug Interactions Database (DDInter), Search Tool for Interacting Chemicals (STITCH), DrugBank, and Traditional Chinese Medicines Integrated Database (TCMID). Through this integration process, we constructed the Microgravity Biology Knowledge Graph (MBKG) consisting of 134,796 biological entities and 3,395,273 triplets. Subsequently, the TransE model was utilized to perform knowledge graph embedding. By calculating the distances between entities in the model space, the model successfully predicted potential drugs for treating osteoporosis and microgravity-induced bone loss. The results indicate that out of the top 10 ranked western medicines, 7 have been approved for the treatment of osteoporosis. Additionally, among the top 10 ranked traditional Chinese medicines, 5 have scientific literature supporting their effectiveness in treating bone loss. Among the top 20 predicted medicines for microgravity-induced bone loss, 15 have been studied in microgravity or simulated microgravity environments, while the remaining 5 are also applicable for treating osteoporosis. This research highlights the potential application of MBKG in the field of space drug discovery.
Collapse
Affiliation(s)
- Yu-Han Zheng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guan-Jing Pan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Zuo Y, Chen C, Liu F, Hu H, Dong S, Shen Q, Zeng J, Huang L, Liao X, Cao Z, Zhong Z, Lu H, Chen J. Pinoresinol diglucoside mitigates dexamethasone-induced osteoporosis and chondrodysplasia in zebrafish. Toxicol Appl Pharmacol 2024; 484:116884. [PMID: 38442791 DOI: 10.1016/j.taap.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The global increase in the aging population has led to a higher incidence of osteoporosis among the elderly. OBJECTIVE This study aimed to evaluate the protective properties of pinoresinol diglucoside (PDG), an active constituent of Eucommia ulmoides, against dexamethasone-induced osteoporosis and chondrodysplasia. METHODS A zebrafish model of osteoporosis was established by exposing larval zebrafish to dexamethasone. The impact of PDG on bone mineralization was assessed through alizarin red and calcein staining. Alkaline phosphatase activity was quantified to evaluate osteoblast function. The influence of PDG on chondrogenesis was estimated using alcian blue staining. Fluorescence imaging and motor behavior analysis were employed to assess the protective effect of PDG on the structure and function of dexamethasone-induced skeletal teratogenesis. qPCR determined the expression of osteogenesis and Wnt signaling-related genes. Molecular docking was used to assess the potential interactions between PDG and Wnt receptors. RESULTS PDG significantly increased bone mineralization and corrected spinal curvature and cartilage malformations in the zebrafish model. Furthermore, PDG enhanced swimming abilities compared to the model group. PDG mitigated dexamethasone-induced skeletal abnormalities in zebrafish by upregulating Wnt signaling, showing potential interaction with Wnt receptors FZD2 and FZD5. CONCLUSION PDG mitigates dexamethasone-induced osteoporosis and chondrodysplasia by promoting bone formation and activating Wnt signaling.
Collapse
Affiliation(s)
- Yuhua Zuo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China
| | - Chao Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Hongmei Hu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China
| | - Si Dong
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Qinyuan Shen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Junquan Zeng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ling Huang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zigang Cao
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China
| | - Huiqiang Lu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Jianjun Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health and General Medicine, Tongji University, School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Zhou Y, Sheng YJ, Li CY, Zou L, Tong CY, Zhang Y, Cao G, Shou D. Beneficial effect and mechanism of natural resourced polysaccharides on regulating bone metabolism through intestinal flora: A review. Int J Biol Macromol 2023; 253:127428. [PMID: 37838110 DOI: 10.1016/j.ijbiomac.2023.127428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Bone metabolism is an important biological process for maintaining bone health. Polysaccharides of natural origin exert beneficial effects on bone metabolism. Polysaccharide molecules often have difficulty passing through the intestinal cell membrane and are directly absorbed in the gastrointestinal tract. Therefore, polysaccharides may affect intestinal flora and play a role in disease treatment. We performed a comprehensive review of the relevant literature published from 2003 to 2023. We found that several polysaccharides from traditional Chinese medicines, including Astragalus, Achyranthes bidentata and Eucommia ulmoides, and the polysaccharides from several dietary fibers mainly composed of inulin, resistant starch, and dextran could enrich the intestinal microbiota group to regulate bone metabolism. The promotion of polysaccharide decomposition by regulating the Bacteroides phylum is particularly critical. Studies on the structure-activity relationship showed that molecular weight, glycosidic bonds, and monosaccharide composition may affect the ability of polysaccharides. The mechanism by which polysaccharides regulate intestinal flora to enhance bone metabolism may be related to the regulation of short-chain fatty acids, immunity, and hormones, involving some signaling pathways, such as TGF-β, Wnt/β-catenin, BMP/Smads, and RANKL. This paper provides a useful reference for the study of polysaccharides and suggests their potential application in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yun Jie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Cheng Yan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Li Zou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chao Ying Tong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; College of Chemistry and Chemical Engineering,Central South University, Changsha, Hunan 410083, PR China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
7
|
Wang Y, Jiang Z, Deng L, Zhang G, Xu X, Alonge E, Zhang H, Guo C. Dendrobium offificinale polysaccharides prevents glucocorticoids-induced osteoporosis by destabilizing KEAP1-NRF2 interaction. Int J Biol Macromol 2023; 253:126600. [PMID: 37652317 DOI: 10.1016/j.ijbiomac.2023.126600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) represents the foremost cause of secondary osteoporosis and fragility fractures. Novel therapeutic strategies for GIOP are needed, with improved safety profiles and reduced costs compared to current options. Dendrobium officinale (D. officinale) is a traditional Chinese medicine that has been reported to have beneficial effects on bone metabolism. Here, we sought to investigate the impacts of D. officinale polysaccharides (DOP), the main active constituents of D. officinale, on GIOP in vivo models and dexamethasone (DEX)-treated osteoblast lineage cells. We found that low concentrations of DOP are relatively safe in vitro and in vivo, respectively. Importantly, we found that DOP treatment significantly inhibited DEX-induced osteoporosis in two in vivo models, zebrafish and mice, while boosting osteogenic differentiation of hBMSCs exposed to DEX. Futhermore, our data reveal that DOP elevates nuclear Nrf2 levels under DEX treatment, by suppressing of Nrf2 ubiquitination. Leveraging Keap1b knockout zebrafish and RNAi approach, we demonstrated that DOP disrupts the association of Nrf2/Keap1, resulting in the inhibition of Nrf2 ubiquitination. Taken together, these results illuminate that DOP stimulates osteogenesis in the presence of DEX by destabilizing the Nrf2/Keap1 interaction. These findings suggest that DOP may serve as a novel drug against osteoporosis caused by glucocorticoids.
Collapse
Affiliation(s)
- Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Gengming Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xia Xu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Emmanuel Alonge
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
8
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
9
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
10
|
Jinteng L, Peitao X, Wenhui Y, Guiwen Y, Feng Y, Xiaojun X, Zepeng S, Jiajie L, Yunshu C, Zhaoqiang Z, Yipeng Z, Zhikun L, Pei F, Qian C, Dateng L, Zhongyu X, Yanfeng W, Huiyong S. BMAL1-TTK-H2Bub1 loop deficiency contributes to impaired BM-MSC-mediated bone formation in senile osteoporosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:568-585. [PMID: 36910712 PMCID: PMC9996134 DOI: 10.1016/j.omtn.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
During the aging process, the reduced osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) results in decreased bone formation, which contributes to senile osteoporosis. Previous studies have confirmed that interrupted circadian rhythm plays an indispensable role in age-related disease. However, the mechanism underlying the impaired osteogenic differentiation of BM-MSCs during aging and its relationship with interrupted circadian rhythm remains unclear. In this study, we confirmed that the circadian rhythm was interrupted in aging mouse skeletal systems. The level of the core rhythm component BMAL1 but not that of CLOCK in the osteoblast lineage was decreased in senile osteoporotic specimens from both human and mouse. BMAL1 targeted TTK as a circadian-controlled gene to phosphorylate MDM2 and regulate H2Bub1 level, while H2Bub1 in turn regulated the expression of BMAL1. The osteogenic capacity of BM-MSCs was maintained by a positive loop formed by BMAL1-TTK-MDM2-H2Bub1. Furthermore, we demonstrated that using bone-targeting recombinant adeno-associated virus 9 (rAAV9) to enhance Bmal1 or Ttk might have a therapeutic effect on senile osteoporosis and delays bone repair in aging mice. In summary, our study indicated that targeting the BMAL1-TTK-MDM2-H2Bub1 axis via bone-targeting rAAV9 might be a promising strategy for the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Li Jinteng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Xu Peitao
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Yu Wenhui
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Ye Guiwen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Ye Feng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Xu Xiaojun
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Su Zepeng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Lin Jiajie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Che Yunshu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zhang Zhaoqiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zeng Yipeng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Li Zhikun
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Feng Pei
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Cao Qian
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Li Dateng
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Xie Zhongyu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Wu Yanfeng
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Shen Huiyong
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| |
Collapse
|
11
|
Tian S, Zou Y, Wang J, Li Y, An BZ, Liu YQ. Protective effect of Du-Zhong-Wan against osteoporotic fracture by targeting the osteoblastogenesis and angiogenesis couple factor SLIT3. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115399. [PMID: 35649495 DOI: 10.1016/j.jep.2022.115399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Du-Zhong-Wan (DZW) is a traditional Chinese medicine (TCM) composed of Eucommia ulmoides Oliv. and Dipsacus asper Wall. ex C.B. Clarke in the ratio 1:1. Based on the TCM theory, DZW nourishes the kidney to strengthen the bones. The literature research revealed that DZW possesses anti-fatigue, anti-depressant, and anti-osteoporotic properties. However, the action and mechanism of DZW on osteoporotic fracture remains slightly unclear. AIM OF THE STUDY To evaluate the pharmacological effect of DZW on ovariectomized mice with an open femoral fracture and reveal the underlying mechanism. MATERIALS AND METHODS We conducted ovariectomy for 5 weeks, followed by unilateral open transverse femoral fracture for another 3 weeks in C57BL/6 mice; during this process, DZW was administrated. The femur bone and vertebra tissues were collected and analyzed by micro-computed tomography, histomorphometry, mechanical strength testing, immunohistochemistry staining, and qRT-PCR analyses. In addition, alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were performed to determine the extent of osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs). Western blotting was performed to examine the protein expression. RESULTS DZW treatment significantly improved the bone histomorphometric parameters in mice undergoing ovariectomy when combined with the femoral fracture, including an increase in the bone volume, trabecular number, and bone formation rate and a decrease in the bone erosion area. Simultaneously, DZW treatment histologically promoted fractured callus formation. Mechanical strength testing revealed significantly higher stiffness and an ultimate load after treatment with DZW. The angiogenesis of H-type vessels was enhanced by DZW, as evidenced by increased levels of CD31 and endomucin (EMCN), the H-type vessel endothelium markers, at the fractured endosteum and metaphysis regions. Relative to the osteoporotic fracture mice, the DZW treatment group showed an increased proangiogenic factor SLIT3 level. The increased level of SLIT3 was also recorded during the process of DZW-stimulated osteoblastogenesis from BMSCs. CONCLUSIONS For the first time, we demonstrated that DZW promoted osteoporotic fracture healing by enhancing osteoblastogenesis and angiogenesis of the H-type vessels. This enhanced combination of osteoblastogenesis and angiogenesis was possibly related to the production of proangiogenic factor SLIT3 induced by DZW.
Collapse
Affiliation(s)
- Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bao-Zhen An
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|