1
|
Li C, Jing J, Wang Y, Jiang H. CENPA facilitates glioma stem cell stemness and suppress ferroptosis to accelerate glioblastoma multiforme progression by promoting GBP2 transcription. Pathol Res Pract 2024; 260:155438. [PMID: 38964117 DOI: 10.1016/j.prp.2024.155438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The function of glioma stem cells (GSCs) is closely related to the progression of glioblastoma multiforme (GBM). Centromere protein A (CENPA) has been confirmed to be related to the poor prognosis of GBM patients. However, whether CENPA regulates GSCs function to mediate GBM progression is still unclear. GSCs were isolated from GBM cells. The expression of CENPA and guanylate-binding protein 2 (GBP2) was examined by quantitative real-time PCR and western blot. GSCs proliferation and stemness were assessed using EdU assay and sphere formation assay. Cell ferroptosis was evaluated by detecting related factors. The interaction between CENPA and GBP2 was analyzed by ChIP assay and dual-luciferase reporter assay. Animal experiments were conducted to measure the effect of CENPA knockdown on the tumorigenicity of GSCs in vivo. CENPA was upregulated in GBM tissues and GSCs. CENPA knockdown inhibited GSCs proliferation, stemnness, and promoted ferroptosis. GBP2 was overexpressed in GBM tissues and GSCs, and CENPA enhanced GBP2 transcription by binding to its promoter region. CENPA overexpression accelerated GSCs proliferation and stemnness and suppressed ferroptosis, while GBP2 knockdown reversed these effects. Downregulation of CENPA reduced the tumorigenicity of GSCs by decreasing GBP2 expression in vivo. In conclusion, CENPA enhanced GBP2 transcription to increase its expression, thus accelerating GSCs proliferation and stemnness and repressing ferroptosis. Our findings promote a new idea for GBM treatment.
Collapse
Affiliation(s)
- Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiangpeng Jing
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Haitao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Odarenko KV, Sen’kova AV, Salomatina OV, Markov OV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone para-methylanilide effectively suppresses aggressive phenotype of glioblastoma cells including TGF-β1-induced glial-mesenchymal transition in vitro and inhibits growth of U87 glioblastoma xenografts in mice. Front Pharmacol 2024; 15:1428924. [PMID: 39135794 PMCID: PMC11317440 DOI: 10.3389/fphar.2024.1428924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Soloxolone amides are semisynthetic triterpenoids that can cross the blood-brain barrier and inhibit glioblastoma growth both in vitro and in vivo. Here we investigate the impact of these compounds on processes associated with glioblastoma invasiveness and therapy resistance. Screening of soloxolone amides against glioblastoma cells revealed the ability of compound 7 (soloxolone para-methylanilide) to inhibit transforming growth factor-beta 1 (TGF-β1)-induced glial-mesenchymal transition Compound 7 inhibited morphological changes, wound healing, transwell migration, and expression of mesenchymal markers (N-cadherin, fibronectin, Slug) in TGF-β1-induced U87 and U118 glioblastoma cells, while restoring their adhesiveness. Confocal microscopy and molecular docking showed that 7 reduced SMAD2/3 nuclear translocation probably by direct interaction with the TGF-β type I and type II receptors (TβRI/II). In addition, 7 suppressed stemness of glioblastoma cells as evidenced by inhibition of colony forming ability, spheroid growth, and aldehyde dehydrogenase (ALDH) activity. Furthermore, 7 exhibited a synergistic effect with temozolomide (TMZ) on glioblastoma cell viability. Using N-acetyl-L-cysteine (NAC) and flow cytometry analysis of Annexin V-FITC-, propidium iodide-, and DCFDA-stained cells, 7 was found to synergize the cytotoxicity of TMZ by inducing ROS-dependent apoptosis. Further in vivo studies showed that 7, alone or in combination with TMZ, effectively suppressed the growth of U87 xenograft tumors in mice. Thus, 7 demonstrated promising potential as a component of combination therapy for glioblastoma, reducing its invasiveness and increasing its sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Nóbrega AHL, Pimentel RS, Prado AP, Garcia J, Frozza RL, Bernardi A. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Curr Cancer Drug Targets 2024; 24:579-594. [PMID: 38310461 DOI: 10.2174/0115680096265849231031101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.
Collapse
Affiliation(s)
| | - Rafael Sampaio Pimentel
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Ana Paula Prado
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Jenifer Garcia
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| |
Collapse
|
4
|
Deng Y, Zeng K, Wu D, Ling Y, Tian Y, Zheng Y, Fang S, Jiang X, Zhu G, Tu Y. FBLIM1 mRNA is a novel prognostic biomarker and is associated with immune infiltrates in glioma. Open Med (Wars) 2023; 18:20230863. [PMID: 38152333 PMCID: PMC10751895 DOI: 10.1515/med-2023-0863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Glioma is the most common primary brain tumor. Filamin-binding LIM protein 1 (FBLIM1) has been identified in multiple cancers and is suspected of playing a part in the development of tumors. However, the potential function of FBLIM1 mRNA in glioma has not been investigated. In this study, the clinical information and transcriptome data of glioma patients were, respectively, retrieved from the TCGA and CGGA databases. The expression level of FBLIM1 mRNA was shown to be aberrant in a wide variety of malignancies. Significantly, when glioma samples were compared to normal brain samples, FBLIM1 expression was shown to be significantly elevated in the former. A poor prognosis was related to high FBLIM1 expression, which was linked to more advanced clinical stages. Notably, multivariate analyses demonstrated that FBLIM1 expression was an independent predictor for the overall survival of glioma patients. Immune infiltration analysis disclosed that FBLIM1 expression had relevance with many immune cells. The results of RT-PCR suggested that FBLIM1 expression was markedly elevated in glioma specimens. Functional experiments unveiled that the knockdown of FBLIM1 mRNA suppressed glioma cell proliferation. In general, we initially discovered that FBLIM1 mRNA might be a possible prognostic marker in glioma.
Collapse
Affiliation(s)
- Yifan Deng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Kailiang Zeng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Diancheng Wu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yunzhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yu Tian
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yi Zheng
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Shumin Fang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaocong Jiang
- Department of Radiotherapy, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Gang Zhu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|