1
|
Shah P, Aghazadeh M, Rajasingh S, Dixon D, Jain V, Rajasingh J. Stem cells in regenerative dentistry: Current understanding and future directions. J Oral Biosci 2024; 66:288-299. [PMID: 38403241 DOI: 10.1016/j.job.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Regenerative dentistry aims to enhance the structure and function of oral tissues and organs. Modern tissue engineering harnesses cell and gene-based therapies to advance traditional treatment approaches. Studies have demonstrated the potential of mesenchymal stem cells (MSCs) in regenerative dentistry, with some progressing to clinical trials. This review comprehensively examines animal studies that have utilized MSCs for various therapeutic applications. Additionally, it seeks to bridge the gap between related findings and the practical implementation of MSC therapies, offering insights into the challenges and translational aspects involved in transitioning from preclinical research to clinical applications. HIGHLIGHTS To achieve this objective, we have focused on the protocols and achievements related to pulp-dentin, alveolar bone, and periodontal regeneration using dental-derived MSCs in both animal and clinical studies. Various types of MSCs, including dental-derived cells, bone-marrow stem cells, and umbilical cord stem cells, have been employed in root canals, periodontal defects, socket preservation, and sinus lift procedures. Results of such include significant hard tissue reconstruction, functional pulp regeneration, root elongation, periodontal ligament formation, and cementum deposition. However, cell-based treatments for tooth and periodontium regeneration are still in early stages. The increasing demand for stem cell therapies in personalized medicine underscores the need for scientists and responsible organizations to develop standardized treatment protocols that adhere to good manufacturing practices, ensuring high reproducibility, safety, and cost-efficiency. CONCLUSION Cell therapy in regenerative dentistry represents a growing industry with substantial benefits and unique challenges as it strives to establish sustainable, long-term, and effective oral tissue regeneration solutions.
Collapse
Affiliation(s)
- Pooja Shah
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marziyeh Aghazadeh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Dixon
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Periodontology, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinay Jain
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
3
|
Panda P, Mishra L, Govind S, Panda S, Lapinska B. Clinical Outcome and Comparison of Regenerative and Apexification Intervention in Young Immature Necrotic Teeth-A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11133909. [PMID: 35807193 PMCID: PMC9267570 DOI: 10.3390/jcm11133909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This systematic review aimed to evaluate interventions individually and compare the clinical outcome of young, immature teeth treated with regenerative endodontic therapy (RET) and apexification procedure. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), bearing the registration number CRD42021230284. A bibliographic search in the biomedical databases was conducted in four databases—PubMed, CENTRAL, EMBASE and ProQuest—using searching keywords and was limited to studies published between January 2000 and April 2022 in English. The search was supplemented by manual searching, citation screening and scanning of all reference lists of selected paper. The study selection criteria were randomized clinical trial, prospective clinical studies and observational studies. The search found 32 eligible articles, which were included in the study. The quality assessment of the studies was performed using the Cochrane risk of bias tool for randomized control trials and non-randomized clinical studies. The meta-analysis was performed using Review Manager software (REVMAN, version 5). The results indicated that a clinicians’ MTA apexification procedure was more successful compared to calcium hydroxide. In RET, apical closure and overall success rate is statistically same for both apical platelet concentrates (APCs) and blood clots (BC). Both interventions have similar survival rates; however, RET should be preferred in cases where the root development is severely deficient, there is insufficient dentine and the tooth’s prognosis is hopeless even with an apexification procedure.
Collapse
Affiliation(s)
- Pratima Panda
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (P.P.); (S.G.)
| | - Lora Mishra
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (P.P.); (S.G.)
- Correspondence: (L.M.); (B.L.); Tel.: +91-889-526-6363 (L.M.); +85-42-675-74-61 (B.L.)
| | - Shashirekha Govind
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (P.P.); (S.G.)
| | - Saurav Panda
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India;
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (L.M.); (B.L.); Tel.: +91-889-526-6363 (L.M.); +85-42-675-74-61 (B.L.)
| |
Collapse
|
4
|
Su J, Ge X, Jiang N, Zhang Z, Wu X. Efficacy of Mesenchymal Stem Cells from Human Exfoliated DeciduousTeeth and their Derivatives in Inflammatory Diseases Therapy. Curr Stem Cell Res Ther 2022; 17:302-316. [PMID: 35440314 DOI: 10.2174/1574888x17666220417153309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cells derived from postnatal orofacial tissues can be readily isolated and possess diverse origins, for example, from surgically removed teeth or gingiva. These cells exhibit stem cell properties, strong potential for self-renewal, and show multi-lineage differentiation, and they have therefore been widely employed in stem cell therapy, tissue regeneration, and inflammatory diseases. Among them, stem cells from human exfoliated deciduous teeth [SHED] and their derivatives have manifested wide application in the treatment of diseases because of their outstanding advantages- including convenient access, easy storage, and less immune rejection. Numerous studies have shown that most diseases are closely associated with inflammation and that inflammatory diseases are extremely destructive, can lead to necrosis of organ parenchymal cells, and can deposit excessive extracellular ma- trix in the tissues. Inflammatory diseases are thus the principal causes of disability and death from many diseases worldwide. SHED and their derivatives not only exhibit the basic characteristics of stem cells but also exhibit some special properties of their own, particularly with regard to their great potential in inhib- iting inflammation and tissue regeneration. SHED therapy may provide a new direction for the treatment of inflammation and corresponding tissue defects. In this review, we critically analyze and summarize the latest findings on the behaviors and functions of SHED, serum‑free conditioned medium from SHED [SHED-CM], and extracellular vesicles, especially exosomes, from SHED [SHED-Exos], and discuss their roles and underlying mechanisms in the control of inflammatory diseases, thus further highlighting additional functions for SHED and their derivatives in future therapies.
Collapse
Affiliation(s)
| | - Xuejun Ge
- Shanxi Medical University School and Hospital of Stomatology & Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | | | - Ziqian Zhang
- Shanxi Medical University School and Hospital of Stomatology & Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaowen Wu
- Shanxi Medical University School and Hospital of Stomatology & Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
5
|
Porrelli D, Gruppuso M, Vecchies F, Marsich E, Turco G. Alginate bone scaffolds coated with a bioactive lactose modified chitosan for human dental pulp stem cells proliferation and differentiation. Carbohydr Polym 2021; 273:118610. [PMID: 34561009 DOI: 10.1016/j.carbpol.2021.118610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
Bioactive and biodegradable porous scaffolds can hasten the healing of bone defects; moreover, patient stem cells seeded onto scaffolds can enhance the osteoinductive and osteoconductive properties of these biomaterials. In this work, porous alginate/hydroxyapatite scaffolds were functionalized with a bioactive coating of a lactose-modified chitosan (CTL). The highly interconnected porous structure of the scaffold was homogeneously coated with CTL. The scaffolds showed remarkable stability up to 60 days of aging. Human Dental Pulp Stem Cells (hDPSCs) cultured in the presence of CTL diluted in culture medium, showed a slight and negligible increase in terms of proliferation rate; on the contrary, an effect on osteogenic differentiation of the cells was observed as a significant increase in alkaline phosphatase activity. hDPSCs showed higher cell adhesion on CTL-coated scaffolds than on uncoated ones. CTL coating did not affect cell proliferation, but stimulated cell differentiation as shown by alkaline phosphatase activity analysis.
Collapse
Affiliation(s)
- Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| | - Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| | - Federica Vecchies
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
6
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|
7
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
8
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
9
|
Ko CS, Chen JH, Su WT. Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review. Curr Stem Cell Res Ther 2020; 15:61-76. [DOI: 10.2174/1574888x14666191018122109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023]
Abstract
Stem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic
neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth.
SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG,
which make SHED to have a significant impact on clinical applications. SHED possess higher rates of
proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters,
and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the
most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation
and banking method, the current development of SHED in regenerative medicine and tissue engineering
in vitro and in vivo.
Collapse
Affiliation(s)
| | - Jen-Hao Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
10
|
Chandran S, John A. Osseointegration of osteoporotic bone implants: Role of stem cells, Silica and Strontium - A concise review. J Clin Orthop Trauma 2019; 10:S32-S36. [PMID: 31695257 PMCID: PMC6823697 DOI: 10.1016/j.jcot.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Osteoporotic fracture treatment has become a skeletal reconstructive challenge due to accelerated bone turnover and impaired bone regeneration potential. Poor osseointegration ability of the osteoporotic bone usually results in implant pull out and failure. Adoption of conventional bone fracture treatment strategies like autografts and allografts have limited applications in such pathological conditions. Hence biomaterials functionalised with therapeutic ions or drugs may be adopted to aid the delivery of therapeutic factors at the defect site to promote bone healing and implant integration, towards functional restoration of the fractured bone. This concise review narrates on improving the osseointegration ability of biomaterials using functional ions like Silica and Strontium. Silica based bone substitutes are known to promote bone healing in non pathological conditions. Further, Strontium based drugs show significant effects in the prevention and treatment of osteoporotic bones. In addition, stem cell therapy has become the focus of orthopaedic research attributed to its ability to restore and accelerate the bone healing process, but the clinical application of stem cells in osteoporotic condition is scarce. Present review suggests a novel strategy of combining the therapeutic potential of functional ions like Silica, Strontium and stem cells within a single implant unit to facilitate osseointegration and osteogenesis, so as to reduce the chances of implant rejection/pull out and encourage osteoporotic bone re-union.
Collapse
|
11
|
Soares IMV, Fernandes GVDO, Larissa Cordeiro C, Leite YKPDC, Bezerra DDO, Carvalho MAMD, Carvalho CMRS. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: characterization and treatment of non-critical defects of the tibia in rats. J Appl Oral Sci 2019; 27:e20180103. [PMID: 30994771 PMCID: PMC6459225 DOI: 10.1590/1678-7757-2018-0103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the inflammatory effect and bone formation in sterile surgical failures after implantation of a collagen sponge with mesenchymal stem cells from human dental pulp (hDPSCs) and Aloe vera. MATERIAL AND METHODS Rattus norvegicus (n=75) were divided into five experimental groups according to treatment: G1) control (blood clot); G2) Hemospon®; G3) Hemospon® in a culture medium enriched with 8% Aloe vera; G4) Hemospon® in a culture medium containing hDPSCs and G5) Hemospon® in a culture medium enriched with 8% Aloe vera and hDPSCs. On days 7, 15 and 30, the animals were euthanized, and the tibia was dissected for histological, immunohistochemistry and immunofluorescence analyses. The results were analyzed using nonparametric Kruskal-Wallis test and Dunn's post-test. RESULTS On days 7 and 15, the groups with Aloe vera had less average acute inflammatory infiltrate compared to the control group and the group with Hemospon® (p<0.05). No statistically significant difference was found between the groups regarding bone formation at the three experimental points in time. Osteopontin expression corroborated the intensity of bone formation. Fluorescence microscopy revealed positive labeling with Q-Tracker® in hDPSCs before transplantation and tissue repair. CONCLUSION The results suggest that the combination of Hemospon®, Aloe vera and hDPSCs is a form of clinical treatment for the repair of non-critical bone defects that reduces the inflammatory cascade's effects.
Collapse
|
12
|
Tania SDM, George A. Extending the envelope of regenerative medicine in orthodontics by stem cells. INTERNATIONAL JOURNAL OF ORTHODONTIC REHABILITATION 2019. [DOI: 10.4103/ijor.ijor_20_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
MORILLO CMR, SLONIAK MC, GONÇALVES F, VILLAR CC. Efficacy of stem cells on bone consolidation of distraction osteogenesis in animal models: a systematic review. Braz Oral Res 2018; 32:e83. [DOI: 10.1590/1807-3107bor-2018.vol32.0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
|
14
|
Safari S, Mahdian A, Motamedian SR. Applications of stem cells in orthodontics and dentofacial orthopedics: Current trends and future perspectives. World J Stem Cells 2018; 10:66-77. [PMID: 29988866 PMCID: PMC6033713 DOI: 10.4252/wjsc.v10.i6.66] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
A simple overview of daily orthodontic practice involves use of brackets, wires and elastomeric modules. However, investigating the underlying effect of orthodontic forces shows various molecular and cellular changes. Also, orthodontics is in close relation with dentofacial orthopedics which involves bone regeneration. In this review current and future applications of stem cells (SCs) in orthodontics and dentofacial orthopedics have been discussed. For craniofacial anomalies, SCs have been applied to regenerate hard tissue (such as treatment of alveolar cleft) and soft tissue (such as treatment of hemifacial macrosomia). Several attempts have been done to reconstruct impaired temporomandibular joint. Also, SCs with or without bone scaffolds and growth factors have been used to regenerate bone following distraction osteogenesis of mandibular bone or maxillary expansion. Current evidence shows that SCs also have potential to be used to regenerate infrabony alveolar defects and move the teeth into regenerated areas. Future application of SCs in orthodontics could involve accelerating tooth movement, regenerating resorbed roots and expanding tooth movement limitations. However, evidence supporting these roles is weak and further studies are required to evaluate the possibility of these ideas.
Collapse
Affiliation(s)
- Shiva Safari
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 13819, Iran
| | - Arezoo Mahdian
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 13819, Iran
| | - Saeed Reza Motamedian
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 13819, Iran
| |
Collapse
|
15
|
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, Campisi G. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 2018; 13:207-218. [PMID: 29553875 DOI: 10.2217/rme-2017-0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable scaffold should be considered a valuable source for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Laura Tomasello
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
16
|
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, Campisi G. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 2018. [DOI: 10.2217/rme-2017-0112 10.2217/rme-2017-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable scaffold should be considered a valuable source for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Laura Tomasello
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
17
|
Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco Bueno D. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J Tissue Eng 2018; 9:2041731417752766. [PMID: 29375756 PMCID: PMC5777558 DOI: 10.1177/2041731417752766] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.
Collapse
|
18
|
Yasui T, Mabuchi Y, Morikawa S, Onizawa K, Akazawa C, Nakagawa T, Okano H, Matsuzaki Y. Isolation of dental pulp stem cells with high osteogenic potential. Inflamm Regen 2017; 37:8. [PMID: 29259707 PMCID: PMC5725894 DOI: 10.1186/s41232-017-0039-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/23/2017] [Indexed: 01/05/2023] Open
Abstract
Dental pulp stem cells/progenitor cells (DPSCs) can be easily obtained and can have excellent proliferative and mineralization potentials. Therefore, many studies have investigated the isolation and bone formation of DPSCs. In most previous reports, human DPSCs were traditionally isolated by exploiting their ability to adhere to plastic tissue culture dishes. DPSCs isolated by plastic adherence are frequently contaminated by other cells, which limits the ability to investigate their basic biology and regenerative properties. Additionally, the proliferative and osteogenic potentials vary depending on the isolated cells. It is very difficult to obtain cells of a sufficient quality to elicit the required effect upon transplantation. Considering clinical applications, stem cells used for regenerative medicine need to be purified in order to increase the efficiency of bone regeneration, and a stable supply of these cells must be generated. Here, we review the purification of DPSCs and studies of cranio-maxillofacial bone regeneration using these cells. Additionally, we introduce the prospective isolation of DPSCs using specific cell surface markers: low-affinity nerve growth factor and thymocyte antigen 1.
Collapse
Affiliation(s)
- Takazumi Yasui
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan.,Department of Dentistry and Oral Surgery, Kawasaki Municipal Kawasaki Hospital, 12-1 Shinkawadori, Kawasaki-ku, Kawasaki, Kanagawa 210-0013 Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan.,Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Katsuhiro Onizawa
- Department of Dentistry and Oral Surgery, Kawasaki Municipal Kawasaki Hospital, 12-1 Shinkawadori, Kawasaki-ku, Kawasaki, Kanagawa 210-0013 Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan.,Department of Cancer Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501 Japan
| |
Collapse
|
19
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
20
|
Martinez Saez D, Sasaki RT, Neves ADC, da Silva MCP. Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature. Cells Tissues Organs 2016; 202:269-280. [PMID: 27544531 DOI: 10.1159/000447055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells research has been considered the most advanced sort of medical-scientific research, particularly stem cells from human exfoliated deciduous teeth (SHED), which represent an immature stem cell population. The purpose of this review is to describe the current knowledge concerning SHED from full-text scientific publications from 2003 to 2015, available in English language and based on the keyword and/or abbreviations 'stem cells from human exfoliated deciduous teeth (SHED)', and individually presented as to the properties of SHED, immunomodulatory properties of SHED and stem cell banking. In summary, these cell populations are easily accessible by noninvasive procedures and can be isolated, cultured and expanded in vitro, successfully differentiated in vitro and in vivo into odontoblasts, osteoblasts, chondrocytes, adipocytes and neural cells, and present low immune reactions or rejection following SHED transplantation. Furthermore, SHED are able to remain undifferentiated and stable after long-term cryopreservation. In conclusion, the high proliferative capacity, easy access, multilineage differentiation capacity, noninvasiveness and few ethical concerns make stem cells from human exfoliated deciduous teeth the most valuable source of stem cells for tissue engineering and cell-based regenerative medicine therapies.
Collapse
|
21
|
Tee BC, Sun Z. Mandibular distraction osteogenesis assisted by cell-based tissue engineering: a systematic review. Orthod Craniofac Res 2016; 18 Suppl 1:39-49. [PMID: 25865532 DOI: 10.1111/ocr.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To review the advances and limitations of recent investigations on mandibular distraction osteogenesis (MDO) assisted by mesenchymal stem cell (MSC) transplantation. MATERIALS AND METHODS Following the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines, the PubMed, Scopus, and Cochrane electronic databases were systematically searched and screened from their inception through August 2014. Searching terms included the following: 'distraction osteogenesis', 'mandible OR mandibular OR jaw', and 'cells', without any other limitations. RESULTS Nineteen studies meeting the eligibility criteria were selected from 227 published articles and used for qualitative synthesis. Fifteen of the studies used small animal models (rats or rabbits), while the other four used large animal models (dogs, pigs or sheep). Among these studies, large variations exist in MDO protocol, cell transplantation time, route and quantity, as well as methodology of outcome assessment. Additionally, all studies had certain biases. Nevertheless, the majority of studies found that MSC transplantation enhanced MDO bone regeneration. CONCLUSION Evidence from animal studies indicates that MDO may be enhanced by mesenchymal stem cell transplantation, but many questions related to animal models, MDO protocols, and cell transplantation remain to be investigated.
Collapse
Affiliation(s)
- B C Tee
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
22
|
Heng BC, Lim LW, Wu W, Zhang C. An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells In Vitro. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:220-50. [PMID: 26757369 DOI: 10.1089/ten.teb.2015.0488] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, various adult stem cells have been identified within the oral cavity, including dental pulp stem cells, dental follicle stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and mesenchymal stem cells from the gingiva. All of these possess neurogenic potential due to their common developmental origin from the embryonic neural crest. Besides the relative ease of isolation of these adult stem cells from readily available biological waste routinely produced during dental treatment, these cells also possess the advantage of immune compatibility in autologous transplantation. In recent years, much interest has been focused on the derivation of neural lineages from these adult stem cells for therapeutic applications in the brain, spinal cord, and peripheral nerve regeneration. In addition, there are also promising nontherapeutic applications of stem cell-derived neurons in pharmacological and toxicological screening of neuroactive drugs, and for in vitro modeling of neurodevelopmental and neurodegenerative diseases. Hence, this review will critically examine the diverse array of in vitro neural induction protocols that have been devised for dental and oral-derived stem cells. These protocols are defined not only by the culture milieu comprising the basal medium plus growth factors, small molecules, and other culture supplements but also by the substrata/surface coatings utilized, the presence of multiple culture stages, the total culture duration, the initial seeding density, and whether the spheroid/neurosphere formation is being utilized to recapitulate the three-dimensional neural differentiation microenvironment that is naturally present physiologically in vivo.
Collapse
Affiliation(s)
- Boon Chin Heng
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| | - Lee Wei Lim
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Wutian Wu
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Chengfei Zhang
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| |
Collapse
|
23
|
Fujio M, Xing Z, Sharabi N, Xue Y, Yamamoto A, Hibi H, Ueda M, Fristad I, Mustafa K. Conditioned media from hypoxic-cultured human dental pulp cells promotes bone healing during distraction osteogenesis. J Tissue Eng Regen Med 2015; 11:2116-2126. [PMID: 26612624 PMCID: PMC5516172 DOI: 10.1002/term.2109] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Distraction osteogenesis (DO) is a surgical procedure used to correct various skeletal disorders. Improving the technique by reducing the healing time would be of clinical relevance. The aim of this study was to determine the angiogenic and regenerative potential of conditioned media (CMs) collected from human dental pulp cells (hDPCs) grown under different culture conditions. CM collected from cells under hypoxia was used to improve bone healing and the DO procedure in vivo. The angiogenic potentials of CMs collected from hDPCs grown under normoxic (−Nor) and hypoxic (−Hyp) conditions were evaluated by quantitative PCR (VEGF‐A, angiopoietin‐1, angiopoietin‐2, interleukin‐6 (IL‐6) and CXCL12), ELISA assays (VEGF‐A, Ang‐2), tube‐formation and wound‐healing assays, using human umbilical vein endothelial cells. The results demonstrated that hypoxic CM had significantly higher angiogenic potential than normoxic CM. Human fetal osteoblasts (hFOBs) were exposed to CM, followed by alizarin red staining, to assess the osteogenic potential. It was found that CM did not enhance the mineralization capacity of hFOBs. DO was performed in the tibiae of 30 mice, followed by a local injection of 20 µl CM (CM–Nor and CM–Hyp groups) or serum‐free DMEM (control group) into the distraction zone every second day. The mice were sacrificed at days 13 and 27. The CM–Hyp treatment revealed a higher X‐ray density than the control group (p < 0.05). Our study suggests that the angiogenic effect promoted by hypoxic culture conditions is dependent on VEGF‐A and Ang‐2 released from hDPCs. Furthermore, CM–Hyp treatment may thus improve the DO procedure, accelerating bone healing. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Masahito Fujio
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Zhe Xing
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway
| | - Niyaz Sharabi
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway
| | - Akihito Yamamoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Inge Fristad
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway
| |
Collapse
|
24
|
Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies: A Systematic Review Using Modified ARRIVE and CONSORT Guidelines. Stem Cells Int 2015; 2015:378368. [PMID: 26106427 PMCID: PMC4464683 DOI: 10.1155/2015/378368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/01/2015] [Indexed: 12/22/2022] Open
Abstract
Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Mandibular distraction osteogenesis has become one of the most powerful reconstructive tools for addressing congenital lower jaw deformities. This review will focus on clinical and basic science contributions to the literature in the last year, which have shown innovations in mandibular distraction osteogenesis techniques and advances in outcomes. RECENT FINDINGS The longest phase of distraction is consolidation, when newly formed bone must fully heal. If consolidation could be accelerated, the length of time required for fixation would be less and complications associated with fixation devices would decline. In the last year, animal studies were conducted reporting the application of growth factors directly to distraction gaps to accelerate bone formation. Additional research in animal models showed success with the addition of bone marrow-derived mesenchymal stem cells to the distraction gap. Distraction devices are being piloted with automated, continuous formats compared with current devices that require manual activation. The use of surgical planning software programs to determine the location of osteotomies was another focus of current studies. SUMMARY Rates of activation can be accelerated with the addition of stem cells and growth factors to distraction sites, as could time to full consolidation. The addition of mesenchymal stem cells and deferoxamine and the use of low-intensity ultrasound during distraction are three of the most promising approaches reported in recent studies with potential for future translation from animal models. Computer-assisted presurgical planning offers added accuracy and potential time savings. Newer distraction devices using computer automation are still in preliminary phases, but show promise.
Collapse
|
26
|
Today prospects for tissue engineering therapeutic approach in dentistry. ScientificWorldJournal 2014; 2014:151252. [PMID: 25379516 PMCID: PMC4212630 DOI: 10.1155/2014/151252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/09/2014] [Indexed: 02/08/2023] Open
Abstract
In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.
Collapse
|
27
|
Abstract
Osteoporosis is a debilitating disease that affects millions of people worldwide. Current osteoporosis treatments are predominantly bone-resorbing drugs that are associated with several side effects. The use of stem cells for tissue regeneration has raised great hope in various fields of medicine, including musculoskeletal disorders. Stem cell therapy for osteoporosis could potentially reduce the susceptibility of fractures and augment lost mineral density by either increasing the numbers or restoring the function of resident stem cells that can proliferate and differentiate into bone-forming cells. Such osteoporosis therapies can be carried out by exogenous introduction of mesenchymal stem cells (MSCs), typically procured from bone marrow, adipose, and umbilical cord blood tissues or through treatments with drugs or small molecules that recruit endogenous stem cells to osteoporotic sites. The main hurdle with cell-based osteoporosis therapy is the uncertainty of stem cell fate and biodistribution following cell transplantation. Therefore, future advancements will focus on long-term engraftment and differentiation of stem cells at desired bone sites for tangible clinical outcome.
Collapse
Affiliation(s)
- Ben Antebi
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, Hebrew University, Hadassah Medical Campus, POB 12272, Ein Kerem, Jerusalem, 91120, Israel
| | | | | |
Collapse
|