1
|
Zhou J, Cui R, Lin L. A Systematic Review of the Application of Computational Technology in Microtia. J Craniofac Surg 2024; 35:1214-1218. [PMID: 38710037 DOI: 10.1097/scs.0000000000010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024] Open
Abstract
Microtia is a congenital and morphological anomaly of one or both ears, which results from a confluence of genetic and external environmental factors. Up to now, extensive research has explored the potential utilization of computational methodologies in microtia and has obtained promising results. Thus, the authors reviewed the achievements and shortcomings of the research mentioned previously, from the aspects of artificial intelligence, computer-aided design and surgery, computed tomography, medical and biological data mining, and reality-related technology, including virtual reality and augmented reality. Hoping to offer novel concepts and inspire further studies within this field.
Collapse
Affiliation(s)
- Jingyang Zhou
- Ear Reconstruction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
2
|
Tanveer W, Ridwan-Pramana A, Molinero-Mourelle P, Forouzanfar T. Applications of CAD/CAM Technology for Craniofacial Implants Placement and Manufacturing of Auricular Prostheses-Systematic Review. J Clin Med 2023; 12:5950. [PMID: 37762891 PMCID: PMC10532239 DOI: 10.3390/jcm12185950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This systematic review was aimed at gathering the clinical and technical applications of CAD/CAM technology for craniofacial implant placement and processing of auricular prostheses based on clinical cases. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, an electronic data search was performed. Human clinical studies utilizing digital planning, designing, and printing systems for craniofacial implant placement and processing of auricular prostheses for prosthetic rehabilitation of auricular defects were included. Following a data search, a total of 36 clinical human studies were included, which were digitally planned and executed through various virtual software to rehabilitate auricular defects. Preoperative data were collected mainly through computed tomography scans (CT scans) (55 cases); meanwhile, the most common laser scanners were the 3dMDface System (3dMD LLC, Atlanta, Georgia, USA) (6 cases) and the 3 Shape scanner (3 Shape, Copenhagen, Denmark) (6 cases). The most common digital design software are Mimics Software (Mimics Innovation Suite, Materialize, Leuven, Belgium) (18 cases), Freeform software (Freeform, NC, USA) (13 cases), and 3 Shape software (3 Shape, Copenhagen, Denmark) (12 cases). Surgical templates were designed and utilized in 35 cases to place 88 craniofacial implants in auricular defect areas. The most common craniofacial implants were Vistafix craniofacial implants (Entific Medical Systems, Goteborg, Sweden) in 22 cases. A surgical navigation system was used to place 20 craniofacial implants in the mastoid bone. Digital applications of CAD/CAM technology include, but are not limited to, study models, mirrored replicas of intact ears, molds, retentive attachments, customized implants, substructures, and silicone prostheses. The included studies demonstrated a predictable clinical outcome, reduced the patient's visits, and completed the prosthetic rehabilitation in reasonable time and at reasonable cost. However, equipment costs and trained technical staff were highlighted as possible limitations to the use of CAD/CAM systems.
Collapse
Affiliation(s)
- Waqas Tanveer
- Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Angela Ridwan-Pramana
- Center for Special Care in Dentistry, Department of Maxillofacial Prosthodontics, Stichting Bijzondere Tandheelkunde, 1081 LA Amsterdam, The Netherlands;
| | - Pedro Molinero-Mourelle
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, CHE 3012 Bern, Switzerland;
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
3
|
Omari A, Frendø M, Sørensen MS, Andersen SAW, Frithioff A. The cutting edge of customized surgery: 3D-printed models for patient-specific interventions in otology and auricular management-a systematic review. Eur Arch Otorhinolaryngol 2022; 279:3269-3288. [PMID: 35166908 DOI: 10.1007/s00405-022-07291-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE 3D-printing (three-dimensional printing) is an emerging technology with promising applications for patient-specific interventions. Nonetheless, knowledge on the clinical applicability of 3D-printing in otology and research on its use remains scattered. Understanding these new treatment options is a prerequisite for clinical implementation, which could improve patient outcomes. This review aims to explore current applications of 3D-printed patient-specific otologic interventions, including state of the evidence, strengths, limitations, and future possibilities. METHODS Following the PRISMA statement, relevant studies were identified through Pubmed, EMBASE, the Cochrane Library, and Web of Science. Data on the manufacturing process and interventions were extracted by two reviewers. Study quality was assessed using Joanna Briggs Institute's critical appraisal tools. RESULTS Screening yielded 590 studies; 63 were found eligible and included for analysis. 3D-printed models were used as guides, templates, implants, and devices. Outer ear interventions comprised 73% of the studies. Overall, optimistic sentiments on 3D-printed models were reported, including increased surgical precision/confidence, faster manufacturing/operation time, and reduced costs/complications. Nevertheless, study quality was low as most studies failed to use relevant objective outcomes, compare new interventions with conventional treatment, and sufficiently describe manufacturing. CONCLUSION Several clinical interventions using patient-specific 3D-printing in otology are considered promising. However, it remains unclear whether these interventions actually improve patient outcomes due to lack of comparison with conventional methods and low levels of evidence. Further, the reproducibility of the 3D-printed interventions is compromised by insufficient reporting. Future efforts should focus on objective, comparative outcomes evaluated in large-scale studies.
Collapse
Affiliation(s)
- Adam Omari
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen Hearing and Balance Center, Copenhagen, Denmark.
| | - Martin Frendø
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen Hearing and Balance Center, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR and Education, Region H, Copenhagen, Denmark
| | - Mads Sølvsten Sørensen
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen Hearing and Balance Center, Copenhagen, Denmark
| | - Steven Arild Wuyts Andersen
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen Hearing and Balance Center, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR and Education, Region H, Copenhagen, Denmark
| | - Andreas Frithioff
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen Hearing and Balance Center, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR and Education, Region H, Copenhagen, Denmark
| |
Collapse
|
4
|
Systematic Review of Clinical Applications of CAD/CAM Technology for Craniofacial Implants Placement and Manufacturing of Nasal Prostheses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073756. [PMID: 33916853 PMCID: PMC8038514 DOI: 10.3390/ijerph18073756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
The aim of this systematic review was to gather the clinical and laboratory applications of CAD/CAM technology for preoperative planning, designing of an attachment system, and manufacturing of nasal prostheses. According to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an electronic search was carried out. Only human clinical studies involving digital planning for the rehabilitation of facial defects were included. A total of 21 studies were included with 23 patients, which were virtually planned through different planning software. The most common preoperative data for digital planning were CT scans in nine cases, CBCT in six cases, and laser scans in six cases. The reported planning softwares were Mimics in six cases, Geomagic Studio software in six cases, ZBrush in four cases, and Freeform plus software in four cases. Ten surgical templates were designed and printed to place 36 implants after digital planning, while post-operative assessment was done in two cases to check the accuracy of planned implants. Digital 3D planning software was reported for presurgical planning and craniofacial implants placement, fabrication of molds, designing of implants, designing of retentive attachments, and printing of silicone prostheses. Digital technology has been claimed to reduce the clinical and laboratory time; however, the equipment cost is still one of the limitations.
Collapse
|
5
|
Francoisse CA, Sescleifer AM, King WT, Lin AY. Three-dimensional printing in medicine: a systematic review of pediatric applications. Pediatr Res 2021; 89:415-425. [PMID: 32503028 DOI: 10.1038/s41390-020-0991-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Three-dimensional printing (3DP) addresses distinct clinical challenges in pediatric care including: congenital variants, compact anatomy, high procedural risk, and growth over time. We hypothesized that patient-specific applications of 3DP in pediatrics could be categorized into concise, discrete categories of use. METHODS Terms related to "three-dimensional printing" and "pediatrics" were searched on PubMed, Scopus, Ovid MEDLINE, Cochrane CENTRAL, and Web of Science. Initial search yielded 2122 unique articles; 139 articles characterizing 508 patients met full inclusion criteria. RESULTS Four categories of patient-specific 3DP applications were identified: Teaching of families and medical staff (9.3%); Developing intervention strategies (33.9%); Procedural applications, including subtypes: contour models, guides, splints, and implants (43.0%); and Material manufacturing of shaping devices or prosthetics (14.0%). Procedural comparative studies found 3DP devices to be equivalent or better than conventional methods, with less operating time and fewer complications. CONCLUSION Patient-specific applications of Three-Dimensional Printing in Medicine can be elegantly classified into four major categories: Teaching, Developing, Procedures, and Materials, sharing the same TDPM acronym. Understanding this schema is important because it promotes further innovation and increased implementation of these devices to improve pediatric care. IMPACT This article classifies the pediatric applications of patient-specific three-dimensional printing. This is a first comprehensive review of patient-specific three-dimensional printing in both pediatric medical and surgical disciplines, incorporating previously described classification schema to create one unifying paradigm. Understanding these applications is important since three-dimensional printing addresses challenges that are uniquely pediatric including compact anatomy, unique congenital variants, greater procedural risk, and growth over time. We identified four classifications of patient-specific use: teaching, developing, procedural, and material uses. By classifying these applications, this review promotes understanding and incorporation of this expanding technology to improve the pediatric care.
Collapse
Affiliation(s)
- Caitlin A Francoisse
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Anne M Sescleifer
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Wilson T King
- Division of Pediatric Cardiology, Saint Louis University School of Medicine, St. Louis, MO, USA.,SSM Health Cardinal Glennon Children's Hospital at SLU, St. Louis, MO, USA
| | - Alexander Y Lin
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA. .,SSM Health Cardinal Glennon Children's Hospital at SLU, St. Louis, MO, USA.
| |
Collapse
|
6
|
Pruthi G, Bansal K, Jain V, Kumar Koli D. Retrospective study of treatment outcomes with implant retained auricular prostheses at a tertiary referral care centre. J Oral Biol Craniofac Res 2020; 10:266-275. [PMID: 32509517 DOI: 10.1016/j.jobcr.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022] Open
Abstract
Purpose To discuss the indications, technical steps for fabrication of implant retained auricular prosthesis (IRAP), and treatment outcome at various follow up visits. Materials and methods We performed retrospective data collection of all consecutively treated patients referred to us for auricular reconstruction from 2006 till 2018. Each case was analysed for: feasibility of autogenous reconstruction vs IRAP, surgical procedure, type of anaesthesia, type of implants, soft tissue response, implant success and survival rate, prosthetic attachment, aesthetic outcome, complications and patient acceptance. Procedure for fabrication of IRAP has also been written in detail to benefit readers. Results IRAP was considered feasible and performed in eight out of 27 patients referred for auricular reconstruction. 20 implants were placed and total 10 prostheses were fabricated. Implant success rate and survival rate was 90% and 100% respectively till last follow-up of each patient. Bar and clip attachments were used in 60% and stud attachments in 40% of prostheses. After stage II surgery, grade I soft tissue inflammation was reported around two implants (10%), and grade III around one implant (5%). Implant with grade III inflammation showed features of recurrent infection and thus was left buried under soft tissues. These prostheses were aesthetically pleasing in all cases in the early post-operative period. Conclusions A systematic, step wise procedure with multi-disciplinary approach is a key to success for the fabrication of implant retained auricular prosthesis.
Collapse
|
7
|
The evolving roles of computer-based technology and smartphone applications in facial plastic surgery. Curr Opin Otolaryngol Head Neck Surg 2019; 27:267-273. [DOI: 10.1097/moo.0000000000000557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|