1
|
Amin D, Nguyen N, Manhan AJ, Kim JH, Roser SM, Bouloux GF. Does a Point-of-Care 3-Dimensional Printer Result in a Decreased Length of Surgery for Orbital Fractures? J Oral Maxillofac Surg 2024; 82:1275-1284. [PMID: 39069281 DOI: 10.1016/j.joms.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Utilization of point-of-care 3-dimensional printing (3DP) has decreased length of surgery in facial trauma. Little is known regarding 3DP's impact on length of surgery in orbital fracture. PURPOSE The purpose of this study was to compare length of surgery between 3DP/preadapted (3DPPA) orbital plates and intraoperative adapted plates (IOAP) for orbital fracture reconstruction. STUDY DESIGN, SETTING, SAMPLE This was a prospective, non-blinded, randomized clinical study of consecutive subjects with orbital fractures presented to Grady Memorial Hospital in Atlanta, Georgia, between January 2018 and June 2021. Subjects ≥ 18 years, unilateral fracture, no previous orbital surgery, and/or congenital craniofacial anomaly were included. We excluded subjects <18 years and bilateral fractures. PREDICTOR/EXPOSURE/INDEPENDENT VARIABLE Primary predictor variable was the treatment approach. Randomization software was used, and subjects were randomized to 3DPPA or IOAP groups. MAIN OUTCOME VARIABLE(S) Primary outcome variable was length of surgery in minutes. Secondary outcomes were the time required for plate insertion and fixation in minutes, operating room (OR) charges, and orbital volume (OV) calculation. COVARIATES Age, sex, race, etiology, laterality, location, dimension, indication for surgery, postoperative enophthalmos, and diplopia. ANALYSES Univariate and bivariate analyses were calculated. Statistical significance was P < .05. RESULTS Twenty-five subjects met the inclusion criteria. Mean ages in 3DPPA and conventional IOAP groups were 41.5 (±9) and 38.2 (±10, P = .31), respectively. The mean length of surgery was 32.6 (±13.7) in 3DPPA and 53.3 (±12.8, P < .001) in conventional IOAP. The mean time required for plate insertion and fixation was 15.8n (±14.4) in 3DPPA and 41.4 (±9.4, P < .001) in conventional IOAP. The mean OR charges were $1,072.5 (±524.6) in 3DPPA and $1,757.3 (±422.6, P ≤ 0.001) in conventional IOAP. The mean calculated OV of uninjured and reconstructed orbit for the 3DPPA was 23.5 (±3.2)cm3 and 23 (±3.5, P = .37)cm3, respectively. The mean calculated OV of uninjured and reconstructed orbit for conventional IOAP was 28.6 (±3.6)cm3 and 22.8 (±2.6, P < .001)cm3, respectively. CONCLUSION AND RELEVANCE Using 3DP to produce a model that enables preoperative plate bending/adaptation reduces the length of surgery, decreases OR charges, and results in predictable OV.
Collapse
Affiliation(s)
- Dina Amin
- Associate Professor, Department of Oral and Maxillofacial Surgery, University of Rochester, Rochester, NY.
| | - Nam Nguyen
- Resident-in-Training, Department of Surgery, University of Florida at Jacksonville, Jacksonville, FL
| | - Andrew J Manhan
- Resident-in-Training, Oral and Maxillofacial Surgery, Emory University School of Medicine, Atlanta, GA
| | - Joon He Kim
- Associate Professor, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA
| | - Steven M Roser
- Professor of Surgery, Residency Program Director, Department of Surgery, Emory University School of Medicine Emory University, Atlanta, GA
| | - Gary F Bouloux
- Professor in Oral and Maxillofacial Surgery, Chief Division of Oral and Maxillofacial Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
2
|
Moris V, Cousin A, Chauvel-Picard J, Lange E, Bourlet J, Zwetyenga N, Gleizal A. Long-term enophthalmos after complex orbital bone loss successfully treated with patient-specific porous titanium implants: A case series. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102019. [PMID: 39182846 DOI: 10.1016/j.jormas.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Long-term enophthalmos and diplopia resulting from orbital bone loss pose significant challenges in reconstructive surgery. This study evaluated the effectiveness of patient-specific porous titanium implants (PSIs) for addressing these conditions. MATERIALS AND METHODS This retrospective study involved 12 patients treated at Croix-Rousse Hospital, Lyon, from April 2015 to April 2022 who underwent late reconstruction via PSI for unilateral complex orbital bone loss. These implants were customized via 3D mirroring techniques on the basis of high-resolution computed tomography (CT) scans of the patients' unaffected orbits. RESULTS All 12 patients presented with significant preoperative enophthalmos, with an average displacement of 3.24 mm, which was effectively corrected postoperatively to an average of 0.17 mm (p < 0.001). Orbital volume notably improved from a preoperative average of 3.38 mL to 0.37 mL postsurgery (p < 0.001). Functional improvements were evident as both enophthalmos and diplopia resolved completely. The Lancaster test revealed an improvement in the visual field, with 83.3 % of patients achieving normal results postoperatively. DISCUSSION By ensuring anatomical accuracy, patient-specific porous titanium implants, tailored from patient-specific imaging and fabricated via advanced 3D printing technology, provide a precise, effective, and reliable solution for reconstructing complex orbital defects and performing complicated revision surgeries.
Collapse
Affiliation(s)
- Vivien Moris
- Service chirurgie maxillo-faciale, plastique-reconstructrice et esthétique, chirurgie de la main, CHU de Dijon, boulevard de Maréchal-de-Lattre-de-Tassigny, 21000 Dijon, France.
| | - Anthony Cousin
- Service de chirurgie Maxillo-faciale, Centre hospitalier de Semur en Auxois, 3 avenue pasteur, 21140 Semur-en-Auxois, France.
| | - Julie Chauvel-Picard
- Department of Cranio-Maxillo-Facial Surgery, Hôpital Nord, Avenue Albert Raimond 42055 Saint-Etienne Cedex, France, Department of Cranio-Maxillo-Facial Surgery of the pediatric hospital, Hôpital Femme Mère Enfant, 59 boulevard Pinel, 69677 Bron, France; Claude Bernard Lyon 1 University, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Edouard Lange
- Department of Cranio-Maxillo-Facial Surgery, Hôpital Nord, Avenue Albert Raimond 42055 Saint-Etienne Cedex, France, Department of Cranio-Maxillo-Facial Surgery of the pediatric hospital, Hôpital Femme Mère Enfant, 59 boulevard Pinel, 69677 Bron, France; Claude Bernard Lyon 1 University, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Jérôme Bourlet
- Department of Cranio-Maxillo-Facial Surgery, Hôpital Nord, Avenue Albert Raimond 42055 Saint-Etienne Cedex, France, Department of Cranio-Maxillo-Facial Surgery of the pediatric hospital, Hôpital Femme Mère Enfant, 59 boulevard Pinel, 69677 Bron, France; Claude Bernard Lyon 1 University, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Narcisse Zwetyenga
- Service chirurgie maxillo-faciale, plastique-reconstructrice et esthétique, chirurgie de la main, CHU de Dijon, boulevard de Maréchal-de-Lattre-de-Tassigny, 21000 Dijon, France, Lipids Nutrition Cancer team NuTox UMR866, université de Bourgogne Franche-Comté, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Arnaud Gleizal
- Department of Cranio-Maxillo-Facial Surgery, Hôpital Nord, Avenue Albert Raimond 42055 Saint-Etienne Cedex, France, Department of Cranio-Maxillo-Facial Surgery of the pediatric hospital, Hôpital Femme Mère Enfant, 59 boulevard Pinel, 69677 Bron, France; Claude Bernard Lyon 1 University, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| |
Collapse
|
3
|
Burger T, Fan K, Brokmeier J, Thieringer FM, Berg BI. Orbital Floor Fractures: Treatment and Diagnostics - A Survey Among Swiss, German and Austrian Maxillofacial Units. Craniomaxillofac Trauma Reconstr 2024:19433875241245498. [PMID: 39553795 PMCID: PMC11562985 DOI: 10.1177/19433875241245498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Study Design N/A. Objective This study investigated the different ways of orbital floor reconstruction with special focus on reconstruction materials, imaging modalities (intra-/ post-operative), 3D printing and navigation. Methods The heads of all governmental-run or associated cranio-maxillofacial surgery units in Switzerland, Austria and Germany were asked in person or received an email link for an online survey with 12 questions. Results The return rate was 57%. The most often selected number of reconstructions was between 10 and 50 per year. Resorbable polydioxanone (PDS) foils (41%) and titanium mesh (18 %) were most often used to reconstruct the orbital floor. 31% use 3D Navigation intraoperative. Post-operative imaging was most often performed with CBCT (34.5%) in patients without complications, whereas CT scans were most often performed (63.3%) in patients with persisting complications. In total, 27% stated that they never use preformed orbital plates, and the remaining units use them more or less regularly. 48% have access to a 3D printer and 75% of the respondents use patient specific implants. Conclusions The majority of the participating units prefer to use resorbable material for the reconstruction of the orbital floor defects. 3D printing facilities are not available in the majority of units, but it can be expected that the number of units with 3D printing facilities will rise in the near future.
Collapse
Affiliation(s)
- Thomas Burger
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Kathleen Fan
- Oral and Maxillofacial Surgery Department, King’s College Hospital NHS Foundation Trust, London, UK
| | | | - Florian M. Thieringer
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, Swiss MAM Research Group, University of Basel, Allschwil, Switzerland
| | - Britt-Isabelle Berg
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Krasovsky A, Hija A, Zeineh N, Capucha T, Haze DA, Emodi O, Rachmiel A, Shilo D. Comparison of patient specific implant reconstruction vs conventional titanium mesh reconstruction of orbital fractures using a novel method. J Craniomaxillofac Surg 2024; 52:491-502. [PMID: 38388230 DOI: 10.1016/j.jcms.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
To compare the reconstruction of orbital fractures using patient-specific implants (PSI) and conventional pre-formed titanium mesh; to develop a method of three-dimensional (3D) superimposition and analysis of the reconstructed orbits; and to present the pitfalls in 3D planning of orbital PSI and how to avoid them. This was a retrospective study of patients with orbital fractures who were treated in our institution between the years 2022 and 2023 using PSI or conservative prefabricated titanium mesh. Three different methods for virtual reconstruction of orbital fractures were used and are detailed with advantages, disadvantages and indications. Data acquired included age, gender, method of reconstruction, functional outcomes and aesthetic outcomes. 3D analysis for accuracy of reconstruction was performed. A total of 23 patients were included; 12 were treated using PSI and 11 using prefabricated titanium meshes. There were 8 male and 4 female patients in the PSI group comparted to 5 and 6 in the prefabricated group. All three virtual methods for reconstruction were used successfully, each with the proper indications. When comparing PSI reconstruction to conventional mesh, a significant difference in accuracy was observed; PSI cases showed an inaccuracy of 0.58 mm compared to 1.54 mm with the conventional method. Complications are presented, and tips for avoiding them are detailed. Three different methods for virtual reconstruction were used successfully; automated computerized reconstruction is used for small defects, repositioning is the superior method for non-comminuted cases while mirroring is the method of choice in comminuted fractures. 3D analysis can be performed using a novel method detailed in this report. PSI reconstruction showed superior results, indicating it should be the method of choice when possible. Pitfalls are presented and approaches to prevent them are discussed. Orbital reconstruction is a very important entity in maxillofacial surgery with crucial functional and esthetical implications, and one should use virtual planning and PSI implants, as they significantly improve outcomes.
Collapse
Affiliation(s)
- Andrei Krasovsky
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Ahmad Hija
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Nidal Zeineh
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Tal Capucha
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Dr Amir Haze
- Department of Orthopedics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Omri Emodi
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Rachmiel
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dekel Shilo
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Reconstructive Surgery. J Oral Maxillofac Surg 2023; 81:E263-E299. [PMID: 37833026 DOI: 10.1016/j.joms.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
|
6
|
Korn P, Spalthoff S, Gellrich NC, Lentge F, Hermann E, Krauss JK, Jehn P. Patient-specific implants for reconstruction of orbit and skull following resection of spheno-orbital meningiomas: A two-implant concept. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101408. [PMID: 36736731 DOI: 10.1016/j.jormas.2023.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The surgical treatment of spheno-orbital meningioma (SOM) is challenging. In addition to anatomical constraints that lead to a difficult resection, the reconstruction of the resulting defect is demanding. Uniform recommendations concerning the best reconstruction technique are not available in the existing literature. We propose a novel two-piece concept for reconstructing post-ablative defects using patient-specific implants. MATERIAL AND METHODS Between 2018 and 2021, seven patients underwent SOM resection using two digitally planned patient-specific implants for orbit and skull reconstruction. To analyze the accuracy of the reconstruction, preoperative plans were merged with postoperative data sets. The clinical outcome was evaluated by comparing the pre- and postoperative exophthalmos index (EI). RESULTS In all cases, adequate reconstruction and a satisfactory match between the final implant position and preoperative planning were achieved. The EI was reduced in all cases from a mean of 1.27 to 1.09 (p = 0.003). CONCLUSIONS The proposed concept of a two-piece reconstruction after SOM resection is an excellent way to manage the concern around post-ablative defects. The current technical conditions allow for a precise, safe, and predictable reconstruction.
Collapse
Affiliation(s)
- Philippe Korn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Simon Spalthoff
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Fritjof Lentge
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Elvis Hermann
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Philipp Jehn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
7
|
Pietzka S, Wenzel M, Winter K, Wilde F, Schramm A, Ebeling M, Kasper R, Scheurer M, Sakkas A. Comparison of Anatomical Preformed Titanium Implants and Patient-Specific CAD/CAM Implants in the Primary Reconstruction of Isolated Orbital Fractures-A Retrospective Study. J Pers Med 2023; 13:jpm13050846. [PMID: 37241016 DOI: 10.3390/jpm13050846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND/AIM Reconstruction of the fractured orbit remains a challenge. The aim of this study was to compare anatomical preformed titanium orbital implants with patient-specific CAD/CAM implants for precision and intraoperative applicability. MATERIAL AND METHODS A total of 75 orbital reconstructions from 2012 to 2022 were retrospectively assessed for their precision of implant position and intra- and postoperative revision rates. For this purpose, the implant position after digital orbital reconstruction was checked for deviations by mirroring the healthy orbit at 5 defined points, and the medical records of the patients were checked for revisions. RESULTS The evaluation of the 45 anatomical preformed orbital implant cases showed significantly higher deviations and an implant inaccuracy of 66.6% than the 30 CAD/CAM cases with only 10% inaccuracy. In particular, the CAD/CAM implants were significantly more precise in medial and posterior positioning. In addition, the intraoperative revision rates of 26.6% vs. 11% after 3D intraoperative imaging and the postoperative revision rates of 13% vs. 0 for the anatomical preformed implants were significantly higher than for patient-specific implants. CONCLUSION We conclude that patient-specific CAD/CAM orbital implants are highly suitable for primary orbital reconstruction. These seem to be preferable to anatomical preformed implants in terms of precision and revision rates.
Collapse
Affiliation(s)
- Sebastian Pietzka
- Department of Cranio-Maxillo-Facial-Surgery, University Hospital Ulm, 89081 Ulm, Germany
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Markus Wenzel
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, University of Leipzig, 04109 Leipzig, Germany
| | - Frank Wilde
- Department of Cranio-Maxillo-Facial-Surgery, University Hospital Ulm, 89081 Ulm, Germany
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Alexander Schramm
- Department of Cranio-Maxillo-Facial-Surgery, University Hospital Ulm, 89081 Ulm, Germany
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Marcel Ebeling
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Robin Kasper
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Mario Scheurer
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| | - Andreas Sakkas
- Department of Cranio-Maxillo-Facial-Surgery, University Hospital Ulm, 89081 Ulm, Germany
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital, 89081 Ulm, Germany
| |
Collapse
|
8
|
Personalized Medicine Workflow in Post-Traumatic Orbital Reconstruction. J Pers Med 2022; 12:jpm12091366. [PMID: 36143151 PMCID: PMC9500769 DOI: 10.3390/jpm12091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Restoration of the orbit is the first and most predictable step in the surgical treatment of orbital fractures. Orbital reconstruction is keyhole surgery performed in a confined space. A technology-supported workflow called computer-assisted surgery (CAS) has become the standard for complex orbital traumatology in many hospitals. CAS technology has catalyzed the incorporation of personalized medicine in orbital reconstruction. The complete workflow consists of diagnostics, planning, surgery and evaluation. Advanced diagnostics and virtual surgical planning are techniques utilized in the preoperative phase to optimally prepare for surgery and adapt the treatment to the patient. Further personalization of the treatment is possible if reconstruction is performed with a patient-specific implant and several design options are available to tailor the implant to individual needs. Intraoperatively, visual appraisal is used to assess the obtained implant position. Surgical navigation, intraoperative imaging, and specific PSI design options are able to enhance feedback in the CAS workflow. Evaluation of the surgical result can be performed both qualitatively and quantitatively. Throughout the entire workflow, the concepts of CAS and personalized medicine are intertwined. A combination of the techniques may be applied in order to achieve the most optimal clinical outcome. The goal of this article is to provide a complete overview of the workflow for post-traumatic orbital reconstruction, with an in-depth description of the available personalization and CAS options.
Collapse
|
9
|
Kotecha S, Ferro A, Harrison P, Fan K. Orbital reconstruction: a systematic review and meta-analysis evaluating the role of patient-specific implants. Oral Maxillofac Surg 2022:10.1007/s10006-022-01074-x. [PMID: 35589881 DOI: 10.1007/s10006-022-01074-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
The purpose of this study is to execute an evidence-based review answering the following question (PICO): "Do patient-specific implants (PSI), manufactured or designed using computer-assisted technology, improve outcomes (orbital volume change, enophthalmos, diplopia, and operative duration) compared to conventional methods in orbital reconstruction following traumatic orbital injury in the adult patient population?" We performed a systematic review and meta-analysis in accordance with PRISMA guidelines. Inclusion criteria included any comparative paper whereby computer-assisted technology was used in the prefabrication or design process of implants for use in post-traumatic orbital reconstruction. Paediatric patient populations were excluded. Eight databases were systematically searched for relevant studies. Risk of bias was assessed through the NOS and RoB2 tools. Random-effects models were used to identify differences in outcomes between groups where possible. Analysis was performed using R 4.0.0. Eleven of 4784 identified studies were included, comprising 628 adult patients, with 302 and 326 patients in the patient-specific and conventional groups, respectively. Weighted mean difference between unaffected and post-operative orbital volume was 0.32 ml (SD 0.75) and 0.95 ml (SD 1.03) for patient-specific and conventional groups, respectively. Significant improvement was identified in post-operative orbital volume reconstitution with the use of PSI, compared to conventional implants, in 3 of the 5 reporting studies. Equally, post-operative enophthalmos trended towards lower severity in the patient-specific group, with 11.2% of patients affected in the patient-specific group and 19.2% in the conventional group, and operative duration was significantly reduced with the use of PSI in 3 of the 6 reporting studies. Despite a tendency to favour PSI, no statistically significant differences in key outcomes were identified on meta-analysis. Although there is some encouraging data to support improved outcomes with the use of patient-specific orbital implants in post-traumatic reconstruction, there is, at present, no statistically significant evidence to objectively support their use over conventional implants based on the currently available comparative studies. Based on the results of this study, the choice of implant used should, thus, be left to the discretion of the surgeon.
Collapse
Affiliation(s)
- Sanjeev Kotecha
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK. .,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK.
| | - Ashley Ferro
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| | - Patrick Harrison
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| | - Kathleen Fan
- Oral and Maxillofacial Surgery Department, King's College Hospital NHS Foundation Trust, London, UK.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| |
Collapse
|