1
|
Caram DA, Inserra PIF, Vitullo AD, Leopardo NP. Autophagy favors survival of corpora lutea during the long-lasting pregnancy of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). Sci Rep 2024; 14:11220. [PMID: 38755206 PMCID: PMC11099099 DOI: 10.1038/s41598-024-61478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
The corpus luteum (CL) is a transient endocrine gland that plays a crucial role in establishing and maintaining pregnancy. Although autophagy and apoptosis have been suggested as cooperative mechanisms, their interaction within the CL of pregnant mammals has not been thoroughly investigated. To understand the collaborative function of autophagy and apoptosis in the CL, we analyzed both mechanisms during pregnancy in the South American plains vizcacha, Lagostomus maximus. This rodent undergoes a decline in progesterone levels during mid-gestation, a reactivation of the hypothalamus-hypophysis-gonadal axis, and the incorporation of new functional secondary CL. Our analysis of autophagy markers BECLIN 1 (BECN1), SEQUESTOSOME1 (SQSTM1), Microtubule-associated protein light chain 3 (LC3B), and lysosomal-associated membrane protein 1 (LAMP1) and anti- and pro-apoptotic markers BCL2 and ACTIVE CASPASE 3 (A-C3) revealed interactive behaviors between both processes. Healthy primary and secondary CL exhibited positive expression of BECN1, SQSTM1, LC3B, and LAMP1, while regressed CL displayed enhanced expression of these autophagy markers along with nuclear A-C3. Transmission electron microscopy revealed a significant formation of autophagic vesicles in regressed CL during full-term pregnancy, whereas healthy CL exhibited a low number of autophagy vesicles. The co-localization between LC3B and SQSTM1 and LC3B with LAMP1 was observed in both healthy and regressed CL during pregnancy, while co-localization of BECN1 and BCL2 was only detected in healthy CL. LC3B and ACTIVE CASPASE 3 co-localization were detected in a subset of luteal cells within the regressing CL. We propose that autophagy could act as a survival mechanism in the CL, allowing the pregnancy to progress until full-term, while also serving as a mechanism to eliminate remnants of regressed CL, thereby providing the necessary space for subsequent follicular maturation.
Collapse
Affiliation(s)
- Daira A Caram
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia P Leopardo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lai W, Li X, Kong Q, Chen H, Li Y, Xu LH, Fang J. Extracellular HMGB1 interacts with RAGE and promotes chemoresistance in acute leukemia cells. Cancer Cell Int 2021; 21:700. [PMID: 34933679 PMCID: PMC8693501 DOI: 10.1186/s12935-021-02387-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background Nowadays, acute leukemia (AL) among children has favorable outcome, yet some of them get refractory or relapse mainly due to drug resistance. High-mobility group box 1 (HMGB1) has been proven to have a important role in drug resistance via upregulation of autophagy after chemotherapy treatment in acute leukemia. However, the mechanism how extracellular HMGB1 acts on AL cells and leads to chemoresistance remains elusive. Method CCK8 was used to examine the toxicity of chemotherapeutic drug. Elisa was performed to detect the release of HMGB1. Western blot and mRFP-GFP-LC3 adenoviral particles as well as transmission electron microscopy were used to detect the autophagy flux. Western blot and flow cytometry were applied to evaluate the apoptosis. qPCR and western blot were conducted to detect the expression of drug efflux protein. Lentivirus infection was applied to knock down RAGE. In addition, T-ALL NOD/SCID mice xenograft model was used to observe the effect of inhibiting HMGB1/RAGE axis. Results We found that extracellular HMGB1 do upregulate autophagy and in the meantime downregulate apoptosis, primarily through interaction with receptor for advanced glycation end products (RAGE). Suppression of RAGE by RNA interference alleviated the level of autophagy and enhanced apoptosis. What’s more, HMGB1/RAGE induced autophagy was associated with the activation of ERK1/2 and decreased phosphorylation of mammalian target of rapamycin (mTOR), while HMGB1/RAGE limited apoptosis in a Bcl-2-regulated way mediated by P53. On the other hand, we found that HMGB1/RAGE activated the NF-κB pathway and promoted the expression of P-glycation protein (P-gp) as well as multidrug resistance-associated protein (MRP), both are ATP-binding cassette transporters. In vivo experiment, we found that blocking HMGB1/RAGE axis do have a mild pathological condition and a better survival in T-ALL mice. Conclusion HMGB1/RAGE have a important role in drug resistance after chemotherapy treatment, mainly by regulating autophagy and apoptosis as well as promoting the expression of drug efflux protein such as P-gp and MRP. HMGB1/RAGE might be a promising target to cure AL, especially for those met with relapse and refractory.
Collapse
Affiliation(s)
- Weixin Lai
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangzhou, People's Republic of China.,Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xinyu Li
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Qian Kong
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Han Chen
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yunyao Li
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lu-Hong Xu
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jianpei Fang
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Rong X, Xu J, Jiang Y, Li F, Chen Y, Dou QP, Li D. Citrus peel flavonoid nobiletin alleviates lipopolysaccharide-induced inflammation by activating IL-6/STAT3/FOXO3a-mediated autophagy. Food Funct 2021; 12:1305-1317. [PMID: 33439200 DOI: 10.1039/d0fo02141e] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nobiletin, a polymethoxyflavone widely present in the peel of citrus fruits, has significant anti-inflammatory activity. Autophagy plays a critical role in maintaining cell homeostasis by promoting the degradation of intracellular structures in response to various stress. Recent research suggests the involvement of autophagy in the inflammatory process and therefore some inflammation-related diseases. However, the "cross-talk" between autophagy and nobiletin's anti-inflammation response remains not well elucidated. Therefore, this study was initiated with the aim of investigating the role of autophagy in nobiletin's protective effect against inflammation in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results showed that nobiletin significantly (P < 0.05) inhibited the release of nitric oxide (NO) and decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, nobiletin significantly (P < 0.05) promoted autophagy as evidenced by the appearance of more autophagosomes, up-regulated LC3II protein, low-regulated p62 protein, and increased autophagy-related (Atg) genes' expression compared with the control treated with LPS alone. Addition of chloroquine, an autophagy inhibitor, alleviated nobiletin's anti-inflammatory effect, further supporting the requirement of an active autophagy process for the citrus peel flavonoid's biological activity. Mechanistically, we found that nobiletin treatment leads to activation of the IL-6/STAT3/FOXO3a signal pathway through the down-regulation of IL-6 and STAT3 phosphorylation and the upregulation of FOXO3a phosphorylation in the cell nucleus, which is responsible for induction of macrophage autophagy. Taken together, our study provides evidence that nobiletin suppresses inflammatory response through enhancing autophagy through activating the IL-6/STAT3/FOXO3a pathway in macrophage cells.
Collapse
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Jie Xu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute and Departments of Oncology, Pharmacology and Pathology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Zhang P, Ni H, Zhang Y, Xu W, Gao J, Cheng J, Tao L. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage. CHEMOSPHERE 2020; 259:127448. [PMID: 32593828 DOI: 10.1016/j.chemosphere.2020.127448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Ivermectin (IVM), a broad-spectrum antiparasitic drug, is widely used in agriculture and animal husbandry. Due to widespread use and little metabolism in animals, the toxicity of IVM has received increasing attention. The accumulation of IVM in animal tissues and the excretion of urine and feces in the environment is the major source of potential toxicity. Human consumption of meat or milk contaminated with livestock can result in exposure to high levels of IVM exposure. The aim of this study was to reveal the cytotoxic mechanism of IVM in model cell HeLa in vitro, in order to provide a theoretical basis for the safe and rational use of IVM. Here we observed the γH2AX and 8-oxodG foci to detect the DNA damage in HeLa cells. As expected, we found that IVM can induce oxidative double-stranded damage in HeLa cells, indicating that IVM has potential genotoxicity to human health. In addition, we observed the formation of LC3-B in HeLa cells, the accumulation of Beclin1, the degradation of p62 and the activation of the AMPK/mTOR signal transduction pathway. This suggests that IVM confers cytotoxicity through autophagy mediated by the AMPK/mTOR signaling pathway. We conclude that IVM produces genotoxicity and cytotoxicity by inducing DNA damage and AMPK/mTOR-mediated autophagy, thereby posing a potential risk to human health.
Collapse
Affiliation(s)
- Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongfei Ni
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
A dual death/survival role of autophagy in the adult ovary of Lagostomus maximus (Mammalia- Rodentia). PLoS One 2020; 15:e0232819. [PMID: 32469908 PMCID: PMC7259749 DOI: 10.1371/journal.pone.0232819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Follicular atresia is a cell death event that occurs in the great majority of follicles before ovulation in the mature mammalian ovary. Germ cell loss has been mainly associated to apoptosis although autophagy also seems to be at play. Aimed to increase our understanding on the possible cooperating role of autophagy and apoptosis in follicular atresia and/or follicular survival, we analyzed both programmed cell death mechanisms in a rodent model, the South American plains vizcacha, Lagostomus maximus. Female vizcacha shows highly suppressed apoptosis-dependent follicular atresia in the adult ovary, with continuous folliculogenesis and massive polyovulation. This strategy of massive ovulation requires a permanent remodeling of the ovarian architecture to maintain the availability of quiescent primordial follicles throughout the individual's reproductive lifespan. We report here our analysis of autophagy (BECN1, LAMP1 and LC3B-I/II) and apoptosis (BCL2 and ACTIVE CASPASE-3) markers which revealed interactive behaviors between both processes, with autophagy promoting survival or cell death depending on the ovarian structure. Strong BECN1, LC3B-II and LAMP1 staining was observed in atretic follicles and degenerating corpora lutea that also expressed nuclear ACTIVE CASPASE-3. Healthy follicles showed a slight expression of autophagy proteins but a strong expression of BCL2 and no detectable ACTIVE CASPASE-3. Transmission electron microscopy revealed a high formation of autophagosomes, autolysosomes and lysosomes in atretic follicles and degenerating corpora lutea and a low number of autophagic vesicles in normal follicles. The co-expression of LC3B-BECN1, LC3B-LAMP1 and LC3B-ACTIVE CASPASE-3 was only detected in atretic follicles and degenerating corpora lutea, while co-expression of BCL2-BECN1 was only observed in normal follicles. We propose that autophagy could act as a mechanism to eliminate altered follicles and remnant corpora lutea providing the necessary space for maturation of primordial follicles that continuously enter the growing follicular pool to sustain massive ovulation.
Collapse
|
6
|
Ceccariglia S, Cargnoni A, Silini AR, Parolini O. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 2020; 16:28-37. [PMID: 31185790 PMCID: PMC6984485 DOI: 10.1080/15548627.2019.1630223] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy occurs at basal levels in all eukaryotic cells and plays an important role in maintaining bio-energetic homeostasis through the control of molecule degradation and organelle turnover. It can be induced by environmental conditions such as starvation, and is deregulated in many diseases including autoimmune diseases, neurodegenerative disorders, and cancer. Interestingly, the modulation of autophagy in mesenchymal stem cells (MSCs) represents a possible mechanism which, affecting MSC properties, may have an impact on their regenerative, therapeutic potential. Furthermore, the ability of MSCs to modulate autophagy of cells in injured tissues/organs has been recently proposed to be involved in the regeneration of damaged tissues and organs. In particular, MSCs can affect autophagy in immune cells involved in injury-induced inflammation reducing their survival, proliferation, and function and favoring the resolution of inflammation. In addition, MSCs can affect autophagy in endogenous adult or progenitor cells, promoting their survival, proliferation and differentiation supporting the restoration of functional tissue. This review provides, for the first time, an overview of the studies which highlight a possible link between the therapeutic properties of MSCs and their ability to modulate autophagy, and it summarizes examples of disorders where these therapeutic properties have been correlated with such modulation. A better elucidation of the mechanism(s) through which MSCs can modulate the autophagy of target cells and how autophagy can affect MSCs therapeutic properties, can provide a wider perspective for the clinical application of MSCs in the treatment of many diseases.Abbreviations: 3-MA: 3-methyladenine; AD: Alzheimer disease; ATG: autophagy-related; BECN1: beclin 1; BM: bone marrow; CD: cluster of differentiation; EAE: experimental autoimmune encephalomyelitis; IL: interleukin; INF: interferon; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MSCs: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; PD: Parkinson disease; PtdIns3K: class III phosphatidylinositol 3-kinase; ROS: reactive oxygen species; SLE: systemic lupus erythematosus; SQSTM1: sequestosome 1; TBI: traumatic brain injury; TGF: transforming growth factor; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Sabrina Ceccariglia
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Anna Cargnoni
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Roma, Italia
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| |
Collapse
|
7
|
Ceccariglia S, Alvino A, Del Fà A, Parolini O, Michetti F, Gangitano C. Autophagy is Activated In Vivo during Trimethyltin-Induced Apoptotic Neurodegeneration: A Study in the Rat Hippocampus. Int J Mol Sci 2019; 21:ijms21010175. [PMID: 31881802 PMCID: PMC6982133 DOI: 10.3390/ijms21010175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Trimethyltin (TMT) is an organotin compound known to produce significant and selective neuronal degeneration and reactive astrogliosis in the rodent central nervous system. Autophagy is the main cellular mechanism for degrading and recycling protein aggregates and damaged organelles, which in different stress conditions, such as starvation, generally improves cell survival. Autophagy is documented in several pathologic conditions, including neurodegenerative diseases. This study aimed to investigate the autophagy and apoptosis signaling pathways in hippocampal neurons of TMT-treated (Wistar) rats to explore molecular mechanisms involved in toxicant-induced neuronal injury. The microtubule-associated protein light chain (LC3, autophagosome marker) and sequestosome1 (SQSTM1/p62) (substrate of autophagy-mediated degradation) expressions were examined by Western blotting at different time points after intoxication. The results demonstrate that the LC3 II/I ratio significantly increased at 3 and 5 days, and that p62 levels significantly decreased at 7 and 14 days. Immunofluorescence images of LC3/neuronal nuclear antigen (NeuN) showed numerous strongly positive LC3 neurons throughout the hippocampus at 3 and 5 days. The terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL) assay indicated an increase in apoptotic cells starting from 5 days after treatment. In order to clarify apoptotic pathway, immunofluorescence images of apoptosis-inducing factor (AIF)/NeuN did not show nuclear translocation of AIF in neurons. Increased expression of cleaved Caspase-3 was revealed at 5-14 days in all hippocampal regions by Western blotting and immunohistochemistry analyses. These data clearly demonstrate that TMT intoxication induces a marked increase in both autophagy and caspase-dependent apoptosis, and that autophagy occurring just before apoptosis could have a potential role in neuronal loss in this experimental model of neurodegeneration.
Collapse
Affiliation(s)
- Sabrina Ceccariglia
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Alvino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Aurora Del Fà
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza—Istituto Ospedaliero, 25124 Brescia, Italy
| | - Fabrizio Michetti
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- IRCSS Istituto Scientifico San Raffaele, Università Vita-Salute San Raffaele, 20132 Milano MI, Italy
- Correspondence: ; Tel.: +39-06-30155848; Fax: +39-06-30155753
| | - Carlo Gangitano
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Sales CF, Melo RMC, Pinheiro APB, Luz RK, Bazzoli N, Rizzo E. Autophagy and Cathepsin D mediated apoptosis contributing to ovarian follicular atresia in the Nile tilapia. Mol Reprod Dev 2019; 86:1592-1602. [DOI: 10.1002/mrd.23245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ana Paula Barbosa Pinheiro
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ronald Kennedy Luz
- Laboratório de Aquacultura, Escola de VeterináriaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Nilo Bazzoli
- Programa de Pós‐graduação em Biologia de VertebradosPontifícia Universidade Católica de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
9
|
Enhanced Production of Anti-PD1 Antibody in CHO Cells through Transient Co-Transfection with Anti-Apoptotic Gene Bcl-xL Combined with Rapamycin. Processes (Basel) 2019. [DOI: 10.3390/pr7060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CHO cells are often used to produce monoclonal antibodies in mammalian cell expression systems. In the process of large-scale cell culture, apoptosis is related to cell survival and product quality. Over-expressing an anti-apoptotic gene to delay apoptosis and improve cell growth is one of the strategies for improving productivity of monoclonal antibodies. Autophagy inducer rapamycin can extend the culture duration of CHO cells and affect the yield of antibodies. A method was developed for transient co-transfection of anti-apoptotic genes and genes of interest combined with rapamycin to increase the transient expression of the anti-PD1 antibody. Under the optimal transfection conditions, the combination of Bcl-xL and rapamycin can significantly delay cell apoptosis, inhibit cell proliferation, and prolong cell life-time. As a result, anti-PD1 monoclonal antibody expression levels are increased by more than 2 times.
Collapse
|
10
|
Tae IH, Park EY, Dey P, Son JY, Lee SY, Jung JH, Saloni S, Kim MH, Kim HS. Novel SIRT1 inhibitor 15-deoxy-Δ12,14-prostaglandin J2 and its derivatives exhibit anticancer activity through apoptotic or autophagic cell death pathways in SKOV3 cells. Int J Oncol 2018; 53:2518-2530. [PMID: 30221742 PMCID: PMC6203160 DOI: 10.3892/ijo.2018.4561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Clinically relevant sirtuin (SIRT) inhibitors may possess antitumor activities. A previous study indicated that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potent anticancer activity by SIRT1 inhibition. Therefore, the aim of the present study was to investigate whether its derivatives (J11-C1 and J19) exhibited anticancer activity against ovarian cancer SKOV3 cells. Cell viability was determined using an MTT assay. Cell cycle arrest, apoptosis and autophagy were determined using flow cytometry or western blot analysis. J11-Cl and J19 were less cytotoxic to SKOV3 cells compared with 15d-PGJ2. Molecular docking studies supported the interactions of 15d-PGJ2, J11-Cl and J19 with various amino acids in SIRT1 proteins. Similar to 15d-PGJ2, J11-C1 and J19 inhibited SIRT1 enzymatic activity and decreased SIRT1 expression levels in a concentration-dependent manner. J11-C1 induced apoptotic cell death more effectively compared with J19, which was associated with markedly decreased expression of the anti-apoptotic molecule B-cell lymphoma 2 (Bcl-2). Furthermore, the levels of light chain 3-II (LC3-II) and beclin-1 were clearly induced in SKOV3 cells treated with J11-Cl. Thus, 15d-PGJ2 and its derivatives exhibited anticancer activity possibly by inducing apoptotic or autophagic cell death pathways. Collectively, the results of the present study suggest that 15d-PGJ2 and its derivatives exerted antitumor activity by selectively modulating the expression of genes associated with cell cycle arrest, apoptosis and autophagy. Notably, J11-C1 is a novel candidate SIRT1 inhibitor with anticancer activity.
Collapse
Affiliation(s)
- In Hwan Tae
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Saloni Saloni
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
11
|
Yadav PK, Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Chaube SK. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy. J Biomed Sci 2018; 25:36. [PMID: 29681242 PMCID: PMC5911955 DOI: 10.1186/s12929-018-0438-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian ovary contains millions of germ cells during embryonic life but only few of them are culminated into oocytes that achieve meiotic competency just prior to ovulation. The majority of germ cells are depleted from ovary through several pathways. Follicular atresia is one of the major events that eliminate germ cells from ovary by engaging apoptotic as well as non-apoptotic pathways of programmed cell death. Apoptosis is characterized by several morphological changes that include cell shrinkage, nuclear condensation, membrane blebbing and cytoplasmic fragmentation by both mitochondria- as well as death receptor-mediated pathways in encircling granulosa cells and oocyte. Although necroapoptosis have been implicated in germ cell depletion, autophagy seems to play an active role in the life and death decisions of ovarian follicles. Autophagy is morphologically characterized by intracellular reorganization of membranes and increased number of autophagic vesicles that engulf bulk cytoplasm as well as organelles. Autophagy begins with the encapsulation of cytoplasmic constituents in a membrane sac known as autophagosomes. The autophagic vesicles are then destroyed by the lysosomal enzymes such as hydrolases that results in follicular atresia. It seems that apoptosis as well as autophagy could play active roles in germ cells depletion from ovary. Hence, it is important to prevent these two pathways in order to retain the germ cells in ovary of several mammalian species that are either threatened or at the verge of extinction. The involvement of apoptosis and autophagy in germ cell depletion from mammalian ovary is reviewed and possible pathways have been proposed.
Collapse
Affiliation(s)
- Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|