1
|
Tedesco NS, Wallace M, Doung YC, Colman M, Wodajo F. Novel Clinical Practice Assessments: Informational Statements by the Musculoskeletal Tumor Society. J Surg Oncol 2024. [PMID: 39463163 DOI: 10.1002/jso.27967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Musculoskeletal oncology involves rare diseases. As a result, there is a paucity of literature to guide practitioners. Studies are often clinical experience, retrospective reviews, noncomparative studies, and involve small numbers of patients. However, technological advances consistently arise in this field. This article represents the Musculoskeletal Tumor Society efforts to improve multispecialty collaboration and research credibility. It involves brief systematic reviews of novel ideas and suggests high-quality research needed to provide and standardize best practices within this field.
Collapse
Affiliation(s)
- Nicholas S Tedesco
- Department of Orthopedic Surgery, WUCOM-PNW, Good Samaritan Regional Medical Center, Corvallis, Oregon, USA
| | - Matthew Wallace
- Surgery and Perioperative Care, University of Texas Dell Medical School, Austin, Texas, USA
| | - Yee-Cheen Doung
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew Colman
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Felasfa Wodajo
- Department of Orthopaedic Surgery, University of Virginia School of Medicine - Inova Campus, Virginia Cancer Specialists, Fairfax, Virginia, USA
| |
Collapse
|
2
|
Li Z, Lu M, Zhang Y, Wang J, Wang Y, Gong T, He X, Luo Y, Zhou Y, Min L, Tu C. 3D-Printed Personalized Lattice Implant as an Innovative Strategy to Reconstruct Geographic Defects in Load-Bearing Bones. Orthop Surg 2024; 16:821-829. [PMID: 38296795 PMCID: PMC10984818 DOI: 10.1111/os.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE Geographic defect reconstruction in load-bearing bones presents formidable challenges for orthopaedic surgeon. The use of 3D-printed personalized implants presents a compelling opportunity to address this issue. This study aims to design, manufacture, and evaluate 3D-printed personalized implants with irregular lattice porous structures for geographic defect reconstruction in load-bearing bones, focusing on feasibility, osseointegration, and patient outcomes. METHODS This retrospective study involved seven patients who received 3D-printed personalized lattice implants for the reconstruction of geographic defects in load-bearing bones. Personalized implants were customized for each patient. Randomized dodecahedron unit cells were incorporated within the implants to create the porous structure. The pore size and porosity were analyzed. Patient outcomes were assessed through a combination of clinical and radiological evaluations. Tomosynthesis-Shimadzu metal artifact reduction technology (T-SMART) was utilized to evaluate osseointegration. Functional outcomes were assessed according to the Musculoskeletal Tumor Society (MSTS) 93 score. RESULTS Multiple pore sizes were observed in porous structures of the implant, with a wide distribution range (approximately 300-900 um). The porosity analysis results showed that the average porosity of irregular porous structures was around 75.03%. The average follow-up time was 38.4 months, ranging from 25 to 50 months. Postoperative X-rays showed that the implants matched the geographic bone defect well. Osseointegration assessments according to T-SMART images indicated a high degree of bone-to-implant contact, along with favorable bone density around the implants. Patient outcomes assessments revealed significant improvements in functional outcomes, with the average MSTS score of 27.3 (range, 26-29). There was no implant-related complication, such as aseptic loosening or structure failure. CONCLUSION 3D-printed personalized lattice implants offer an innovative and promising strategy for geographic defect reconstruction in load-bearing bones. This approach has the potential to match the unique contours and geometry of the geographic bone defect and facilitate osteointegration.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Minxun Lu
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Yuqi Zhang
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Jie Wang
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Yitian Wang
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Taojun Gong
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Xuanhong He
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Yi Luo
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Yong Zhou
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Li Min
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Chongqi Tu
- Department of OrthopedicsOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| |
Collapse
|
3
|
Bruschi A, Donati DM, Di Bella C. What to choose in bone tumour resections? Patient specific instrumentation versus surgical navigation: a systematic review. J Bone Oncol 2023; 42:100503. [PMID: 37771750 PMCID: PMC10522906 DOI: 10.1016/j.jbo.2023.100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Patient specific instrumentation (PSI) and intraoperative surgical navigation (SN) can significantly help in achieving wide oncological margins while sparing bone stock in bone tumour resections. This is a systematic review aimed to compare the two techniques on oncological and functional results, preoperative time for surgical planning, surgical intraoperative time, intraoperative technical complications and learning curve. The protocol was registered in PROSPERO database (CRD42023422065). 1613 papers were identified and 81 matched criteria for PRISMA inclusion and eligibility. PSI and SN showed similar results in margins (0-19% positive margins rate), bone cut accuracy (0.3-4 mm of error from the planned), local recurrence and functional reconstruction scores (MSTS 81-97%) for both long bones and pelvis, achieving better results compared to free hand resections. A planned bone margin from tumour of at least 5 mm was safe for bone resections, but soft tissue margin couldn't be planned when the tumour invaded soft tissues. Moreover, long osteotomies, homogenous bone topology and restricted working spaces reduced accuracy of both techniques, but SN can provide a second check. In urgent cases, SN is more indicated to avoid PSI planning and production time (2-4 weeks), while PSI has the advantage of less intraoperative using time (1-5 min vs 15-65 min). Finally, they deemed similar technical intraoperative complications rate and demanding learning curve. Overall, both techniques present advantages and drawbacks. They must be considered for the optimal choice based on the specific case. In the future, robotic-assisted resections and augmented reality might solve the downsides of PSI and SN becoming the main actors of bone tumour surgery.
Collapse
Affiliation(s)
- Alessandro Bruschi
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Davide Maria Donati
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy
| | - Claudia Di Bella
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- VBJS, Victorian Bone and Joint Specialists, 7/55 Victoria Parade, Fitzroy, VIC 3065, Australia
| |
Collapse
|
4
|
Li Z, Lu M, Zhang Y, Gong T, Min L, Zhou Y, Luo Y, Tu C. 3D-printed custom-made short stem with porous structure for fixation of massive endoprosthesis in joint-preserving reconstruction after tumor resection. J Orthop Surg Res 2023; 18:468. [PMID: 37386639 DOI: 10.1186/s13018-023-03954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Large malignant bone tumors and revision limb salvage procedures often result in massive bone loss, leaving a short residual bone segment that cannot accommodate a standard stem for endoprosthesis fixation. Three-dimensional-printed (3DP) short stem with porous structure seems to be an alternative for short-segment fixation. This retrospective study aims to evaluate surgical outcomes, radiographical results, limb functions, and complications of using 3DP porous short stems in massive endoprosthesis replacement. METHODS Between July 2018 to February 2021, 12 patients with massive bone loss undergoing reconstruction with custom-made, short-stemmed massive endoprostheses were identified. Endoprosthesis replacement involved the proximal femur (n = 4), distal femur (n = 1), proximal humerus (n = 4), distal humerus (n = 1), and proximal radius (n = 2). RESULTS The mean percentage of resected bone was 72.4% of the whole length of the bone, ranging from 58.4 to 88.5%. The mean length of 3DP porous short stems was 6.3 cm. The median follow-up was 38 months (range, 22-58 months). The mean MSTS score was 89%, ranging from 77% to 93%. Radiographical assessment results showed bone in-growth to the porous structure in 11 patients, and the implants were well osseointegrated. Breakage of the 3DP porous short stem occurred in one patient intraoperatively. The patient developed aseptic loosening (Type 2) four-month after surgery and underwent revision with a plate applied to assist fixation. The implant survivorship was 91.7% at 2 years. No other complications were detected, such as soft-tissue failures, structural failures, infection, or tumor progression. CONCLUSIONS 3DP custom-made short stem with porous structure is a viable method for fixation of the massive endoprosthesis in the short segment after tumor resection, with satisfactory limb function, great endoprosthetic stability, and low complication rates.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuqi Zhang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|