1
|
Keszei S, Wang Y, Zhou H, Ollár T, Kováts É, Frey K, Tapasztó L, Shen S, Pap JS. Hydrogen evolution driven by heteroatoms of bidentate N-heterocyclic ligands in iron(II) complexes. Dalton Trans 2024; 53:14817-14829. [PMID: 39171517 DOI: 10.1039/d4dt02081b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
While Pt is considered the best catalyst for the electrocatalytic hydrogen evolution reaction (HER), it is evident that non-noble metal alternatives must be explored. In this regard, it is well known that the binding sites for non-noble metals play a pivotal role in facilitating efficient catalysis. Herein, we studied Fe(II) complexes with bidentate 2-(2'-pyridyl)benzoxazole (LO), 2-(2'-pyridyl)benzthiazole (LS), 2-(2'-pyridyl)benzimidazole (LNH), and 2-2'-bipyridyl (Lpy) ligands - by adding trifluoroacetic acid (TFA) to their acetonitrile solution - in order to examine how their reactivity towards protons under reductive conditions could be impacted by the non-coordinating heteroatoms (S, O, N, or none). By applying this ligand series, we found that the reduction potentials relevant for HER correlate with ligand basicity in the presence of TFA. Moreover, DFT calculations underlined the importance of charge distribution in the ligand-based LUMO and LUMO+1 orbitals of the complexes, dependent on the heterocycle. Kinetic studies and controlled potential electrolysis - using TFA as a proton source - revealed HER activities for the complexes with LNH, LO, and LS of kobs = 0.03, 1.1, and 10.8 s-1 at overpotentials of 0.81, 0.76, and 0.79 V, respectively, and pointed towards a correlation between the kinetics of the reaction and the non-coordinating heteroatoms of the ligands. In particular, the activity was associated with the [Fe(LS/O/NH)2(S)2]2+ form (S = solvent or substrate molecule), and the rate-determining step involved the formation of [Fe(H-H)]+, during the weakening of Fe-H and CF3CO2-H bonds, according to the experimental and DFT results.
Collapse
Affiliation(s)
- Soma Keszei
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary.
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Yiqing Wang
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haotian Zhou
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tamás Ollár
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Éva Kováts
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Krisztina Frey
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Levente Tapasztó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary.
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - József Sándor Pap
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| |
Collapse
|
2
|
Cheng M, Shen S, Zhang Z, Niu K, Wang N. Diiron Complexes with Rigid and Conjugated S-to-S Bridges for Electrocatalytic Reduction of CO 2. Inorg Chem 2024; 63:15599-15610. [PMID: 39106257 DOI: 10.1021/acs.inorgchem.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Electroreduction of CO2 to value-added low-carbon chemicals is a promising way for carbon neutrality and CO2 utilization. It was found that the diiron complex [(μ-bdt)Fe2(CO)6] (bdt = benzene-1,2-dithiolate) has high catalytic activity for electrocatalytic CO2 reduction. To further study the effect of the S-to-S bridge on the catalytic performances of diiron complexes for electrochemical CO2 reduction, four diiron complexes 1-4 with different rigid and conjugated S-to-S bridges were either selected or designed. The electrocatalytic studies showed that under optimal conditions, 2 with a 2,3-naphthalenedithiolato bridge exhibited the lowest catalytic onset potential (Eonset = -1.75 V vs Fc+/0), while 4 with a diphenyl-1,2-vinylidene bridge displayed the highest catalytic activity (TOFmax = 295 s-1), which is 1.5 times that of [(μ-bdt)Fe2(CO)6]. The controlled potential electrolysis experiments of 4 in 0.1 M MeOH/MeCN at -2.35 V vs Fc+/0 gave a total faradaic yield close to 100%, with selectivities of 77%, 9%, and 14% for HCOOH, CO, and H2, respectively. The mechanism for CO2 reduction was studied using density functional theory, IR spectroelectrochemistry, and electrochemical methods. The results indicate that modifying the structure of the S-to-S bridge is an effective strategy to improve the catalytic performance of diiron complexes for electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Minglun Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Sibo Shen
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zhiwei Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Kui Niu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Agarwal T, Kaur‐Ghumaan S. [FeFe] Hydrogenase: 2‐Propanethiolato‐Bridged {FeFe} Systems as Electrocatalysts for Hydrogen Production in Acetonitrile‐Water. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Tashika Agarwal
- Department of Chemistry University of Delhi Delhi 110007 India
| | | |
Collapse
|
4
|
Biancalana L, Kubeil M, Schoch S, Zacchini S, Marchetti F. Switching on Cytotoxicity of Water-Soluble Diiron Organometallics by UV Irradiation. Inorg Chem 2022; 61:7897-7909. [PMID: 35537207 PMCID: PMC9951222 DOI: 10.1021/acs.inorgchem.2c00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diiron compounds [Fe2Cp2(CO)2(μ-CO)(μ-CSEt)]CF3SO3, [1]CF3SO3, K[Fe2Cp2(CO)3(CNCH2CO2)], K[2], [Fe2Cp2(CO)2(μ-CO)(μ-CNMe2)]NO3, [3]NO3, [Fe2Cp2(CO)2(PTA){μ-CNMe(Xyl)}]CF3SO3, [4]CF3SO3, and [Fe2Cp2(CO)(μ-CO){μ-η:1η3-C(4-C6H4CO2H)CHCNMe2}]CF3SO3, [5]CF3SO3, containing a bridging carbyne, isocyanoacetate, or vinyliminium ligand, were investigated for their photoinduced cytotoxicity. Specifically, the novel water-soluble compounds K[2], [3]NO3, and [4]CF3SO3 were synthesized and characterized by elemental analysis and IR and multinuclear NMR spectroscopy. Stereochemical aspects concerning [4]CF3SO3 were elucidated by 1H NOESY NMR and single-crystal X-ray diffraction. Cell proliferation studies on human skin cancer (A431) and nontumoral embryonic kidney (HEK293) cells, with and without a 10-min exposure to low-power UV light (350 nm), highlighted the performance of the aminocarbyne [3]NO3, nicknamed NIRAC (Nitrate-Iron-Aminocarbyne), which is substantially nontoxic in the dark but shows a marked photoinduced cytotoxicity. Spectroscopic (IR, UV-vis, NMR) measurements and the myoglobin assay indicated that the release of one carbon monoxide ligand represents the first step of the photoactivation process of NIRAC, followed by an extensive disassembly of the organometallic scaffold.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy,
| | - Manja Kubeil
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Silvia Schoch
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Zacchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Fabio Marchetti
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
5
|
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Li T, Xie B, Zhang D, Lai C, Li X, Mou W, Cao J, Bai X, Chen L. Electrocatalytic Hydrogen Evolution Catalyzed by 3,4‐Toluenedithiolate Nickel Complexes of Bis(diphenylphosphine)amine Ligand Containing An Azahydrophilic Group. ChemCatChem 2021. [DOI: 10.1002/cctc.202100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Li
- School of Materials Science and Engineering, Key Laboratory of Material Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
- School of Chemical Engineering Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| | - Bin Xie
- School of Materials Science and Engineering, Key Laboratory of Material Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
- Sichuan Province Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources Panzhihua University Airport Rd. 10 Panzhihua 617000 P. R. China
| | - Dongliang Zhang
- School of Materials Science and Engineering, Key Laboratory of Material Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| | - Chuan Lai
- School of Chemistry and Chemical Engineering Sichuan University of Arts and Science Tashi Rd. 519 Dazhou 635000 P. R. China
| | - Xiaolong Li
- School of Materials Science and Engineering, Key Laboratory of Material Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| | - Wenyu Mou
- College of Chemistry and Environmental Engineering Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| | - Jiaxi Cao
- College of Chemistry and Environmental Engineering Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| | - Xiaoxue Bai
- School of Materials Science and Engineering, Key Laboratory of Material Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| | - Luo Chen
- School of Materials Science and Engineering, Key Laboratory of Material Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Xueyuan Str. 180 Zigong 643000 P. R. China
| |
Collapse
|
7
|
Mahmoud AG, Guedes da Silva MFC, Pombeiro AJ. 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) and derivatives: Coordination chemistry and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
9
|
Agarwal T, Kaur-Ghumaan S. Mono- and dinuclear mimics of the [FeFe] hydrogenase enzyme featuring bis(monothiolato) and 1,3,5-triaza-7-phosphaadamantane ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Zhang YP, Zhang M, Chen XR, Lu C, Young DJ, Ren ZG, Lang JP. Cobalt(II) and Nickel(II) Complexes of a PNN Type Ligand as Photoenhanced Electrocatalysts for the Hydrogen Evolution Reaction. Inorg Chem 2020; 59:1038-1045. [DOI: 10.1021/acs.inorgchem.9b02497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ya-Ping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Xu-Ran Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - David James Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
- Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Gao S, Liu Y, Shao Y, Jiang D, Duan Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Zaffaroni R, Dzik WI, Detz RJ, van der Vlugt JI, Reek JNH. Proton Relay Effects in Pyridyl‐Appended Hydrogenase Mimics for Proton Reduction Catalysis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Riccardo Zaffaroni
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wojciech I. Dzik
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Remko J. Detz
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- ECN.TNO Energy Transition Studies Radarweg 60 1043 NT Amsterdam The Netherlands
| | - Jarl Ivar van der Vlugt
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
13
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Song LC, Feng L, Guo YQ. Hydrophilic quaternary ammonium-group-containing [FeFe]H2ase models prepared by quaternization of the pyridyl N atoms in pyridylazadiphosphine- and pyridylmethylazadiphosphine-bridged diiron complexes with various electrophiles. Dalton Trans 2019; 48:1443-1453. [DOI: 10.1039/c8dt04211j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The first aromatic quaternary ammonium-group-containing [FeFe]H2ase models have been prepared and some of them found to be catalysts for H2 production under CV conditions.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Li Feng
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuan-Qiang Guo
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
15
|
Kankanamalage PHA, Ekanayake DM, Singh N, de Morais ACP, Mazumder S, Verani CN, Mukherjee A, Lanznaster M. Effect of ligand substituents on nickel and copper [N4] complexes: electronic and redox behavior, and reactivity towards protons. NEW J CHEM 2019. [DOI: 10.1039/c9nj01283d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ligand substituents have a major effect on the redox potentials, catalytic efficiency and robustness of the complexes in HER.
Collapse
Affiliation(s)
| | | | - Nirupama Singh
- Department of Chemistry
- University of Alabama
- Huntsville
- USA
| | | | - Shivnath Mazumder
- Department of Chemistry
- Indian Institute of Technology Jammu
- Jammu (J&K)
- India
| | | | | | | |
Collapse
|
16
|
[FeFe]-Hydrogenase and its organic molecule mimics—Artificial and bioengineering application for hydrogenproduction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Ekanayake DM, Kulesa KM, Singh J, Kpogo KK, Mazumder S, Bernhard Schlegel H, Verani CN. A pentadentate nitrogen-rich copper electrocatalyst for water reduction with pH-dependent molecular mechanisms. Dalton Trans 2017; 46:16812-16820. [DOI: 10.1039/c7dt02711g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyst is active towards water reduction with distinctive pH-dependent mechanisms. The CuIII–H− intermediate is bypassed by PCET processes.
Collapse
|
18
|
Song LC, Wang YX, Xing XK, Ding SD, Zhang LD, Wang XY, Zhang HT. Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production. Chemistry 2016; 22:16304-16314. [DOI: 10.1002/chem.201603040] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P.R. China
| | - Yong-Xiang Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xu-Kang Xing
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Shu-Da Ding
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Long-Duo Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xu-Yong Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Hong-Tao Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
19
|
Roy S, Nguyen TAD, Gan L, Jones AK. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Dalton Trans 2016. [PMID: 26223293 DOI: 10.1039/c5dt01796c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two synthetic strategies for incorporating diiron analogues of [FeFe]-hydrogenases into short peptides via phosphine functional groups are described. First, utilizing the amine side chain of lysine as an anchor, phosphine carboxylic acids can be coupled via amide formation to resin-bound peptides. Second, artificial, phosphine-containing amino acids can be directly incorporated into peptides via solution phase peptide synthesis. The second approach is demonstrated using three amino acids each with a different phosphine substituent (diphenyl, diisopropyl, and diethyl phosphine). In total, five distinct monophosphine-substituted, diiron model complexes were prepared by reaction of the phosphine-peptides with diiron hexacarbonyl precursors, either (μ-pdt)Fe2(CO)6 or (μ-bdt)Fe2(CO)6 (pdt = propane-1,3-dithiolate, bdt = benzene-1,2-dithiolate). Formation of the complexes was confirmed by UV/Vis, FTIR and (31)P NMR spectroscopy. Electrocatalysis by these complexes is reported in the presence of acetic acid in mixed aqueous-organic solutions. Addition of water results in enhancement of the catalytic rates.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
20
|
Troppmann S, Brandes E, Motschmann H, Li F, Wang M, Sun L, König B. Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]-Hydrogenase Subunit Mimic on Self-Assembled Membranes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Ye K, Li YY, Liao RZ. DFT study of the mechanism of hydrogen evolution catalysed by molecular Ni, Co and Fe catalysts containing a diamine–tripyridine ligand. RSC Adv 2016. [DOI: 10.1039/c6ra20721a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Electrolysis of water to obtain hydrogen is a practical way to transform surplus electrical power into clean and sustainable hydrogen fuels.
Collapse
Affiliation(s)
- Ke Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Gloaguen F. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water. Inorg Chem 2015; 55:390-8. [PMID: 26641526 DOI: 10.1021/acs.inorgchem.5b02245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.
Collapse
Affiliation(s)
- Frederic Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837 , 29238 Brest, France
| |
Collapse
|
23
|
Liao RZ, Wang M, Sun L, Siegbahn PEM. The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Trans 2015; 44:9736-9. [DOI: 10.1039/c5dt01008j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations suggest that hydrogen evolution proceeds via coupling of a Cu(ii)-hydride and a pendant pyridinium.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Mei Wang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024
- China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024
- China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-10691 Stockholm
- Sweden
| |
Collapse
|
24
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
25
|
Zhang P, Wang M, Yang Y, Yao T, Sun L. A molecular copper catalyst for electrochemical water reduction with a large hydrogen-generation rate constant in aqueous solution. Angew Chem Int Ed Engl 2014; 53:13803-7. [PMID: 25314646 DOI: 10.1002/anie.201408266] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 11/12/2022]
Abstract
The copper complex [(bztpen)Cu](BF4)2 (bztpen=N-benzyl-N,N',N'-tris(pyridin-2-ylmethyl)ethylenediamine) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen-generation rate constant (k(obs)) of over 10000 s(-1). A turnover frequency (TOF) of 7000 h(-1) cm(-2) and a Faradaic efficiency of 96% were obtained from a controlled potential electrolysis (CPE) experiment with [(bztpen)Cu](2+) in pH 2.5 buffer solution at -0.90 V versus the standard hydrogen electrode (SHE) over two hours using a glassy carbon electrode. A mechanism involving two proton-coupled reduction steps was proposed for the dihydrogen generation reaction catalyzed by [(bztpen)Cu](2+).
Collapse
Affiliation(s)
- Peili Zhang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian (China)
| | | | | | | | | |
Collapse
|
26
|
Zhang P, Wang M, Yang Y, Yao T, Sun L. A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Wang W, Yu T, Zeng Y, Chen J, Li Y. An [Fe-Fe]-Hydrogenase Mimic Immobilized on MCM-41 for the Photochemical Production of Hydrogen in Pure Water. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Gao S, Guo H, Peng X, Zhao X, Duan Q, Liang Q, Jiang D. The employment of a hydrophilic tris(morpholino)phosphine ligand in diiron propane-1,3-dithiolate complexes for potentially water-soluble iron-only hydrogenase active-site mimics. NEW J CHEM 2013. [DOI: 10.1039/c3nj41058g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Feng YN, Xu FF, Chen RP, Wen N, Li ZH, Du SW. Preparation, structures and electrochemical property of diiron dithiolate complexes with hydrophilic N-donor ligands. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Quentel F, Passard G, Gloaguen F. A Binuclear Iron-Thiolate Catalyst for Electrochemical Hydrogen Production in Aqueous Micellar Solution. Chemistry 2012; 18:13473-9. [DOI: 10.1002/chem.201201884] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 11/06/2022]
|
31
|
Xu E, Xiao Z, Liu H, Long L, Li L, Liu X. [FeFe]-hydrogenase-inspired membrane electrode and its catalytic evolution of hydrogen in water. RSC Adv 2012. [DOI: 10.1039/c2ra21036c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
|
33
|
Cao WN, Wang F, Wang HY, Chen B, Feng K, Tung CH, Wu LZ. Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system. Chem Commun (Camb) 2012; 48:8081-3. [DOI: 10.1039/c2cc33097k] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Singleton ML, Crouthers DJ, Duttweiler RP, Reibenspies JH, Darensbourg MY. Sulfonated diiron complexes as water-soluble models of the [Fe-Fe]-hydrogenase enzyme active site. Inorg Chem 2011; 50:5015-26. [PMID: 21524099 DOI: 10.1021/ic200272x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of diiron complexes developed as fundamental models of the two-iron subsite in the [FeFe]-hydrogenase enzyme active site show water-solubility by virtue of a sulfonate group incorporated into the -SCH(2)NRCH(2)S- dithiolate unit that bridges two Fe(I)(CO)(2)L moieties. The sulfanilic acid group imparts even greater water solubility in the presence of β-cyclodextrin, β-CyD, for which NMR studies suggest aryl-sulfonate inclusion into the cyclodextrin cavity as earlier demonstrated in the X-ray crystal structure of 1Na·2 β-CyD clathrate, where 1Na = Na(+)(μ-SCH(2)N(C(6)H(4)SO(3)(-))CH(2)S-)[Fe(CO)(3)](2), (Singleton et al., J. Am. Chem. Soc.2010, 132, 8870). Electrochemical analysis of the complexes for potential as electrocatalysts for proton reduction to H(2) finds the presence of β-CyD to diminish response, possibly reflecting inhibition of structural rearrangements required of the diiron unit for a facile catalytic cycle. Advantages of the aryl sulfonate approach include entry into a variety of water-soluble derivatives from the well-known (μ-SRS)[Fe(CO)(3)](2) parent biomimetic, that are stable in O(2)-free aqueous solutions.
Collapse
Affiliation(s)
- Michael L Singleton
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
35
|
Wang M, Chen L, Li X, Sun L. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Dalton Trans 2011; 40:12793-800. [DOI: 10.1039/c1dt11166c] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Chen J, Szalda DJ, Fujita E, Creutz C. Iron(II) and Ruthenium(II) Complexes Containing P, N, and H Ligands: Structure, Spectroscopy, Electrochemistry, and Reactivity. Inorg Chem 2010; 49:9380-91. [DOI: 10.1021/ic101077t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinzhu Chen
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - David J. Szalda
- Department of Natural Sciences, Baruch College, New York, New York 10010
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Carol Creutz
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| |
Collapse
|
37
|
Bravo J, Bolaño S, Gonsalvi L, Peruzzini M. Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA) and derivatives. Part II. The quest for tailored ligands, complexes and related applications. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.08.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Zeng X, Li Z, Liu X. Mechanistic investigations into electrocatalytic substitution reactions of two diiron hexacarbonyl complexes by triphenyl phosphine ligand. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Apfel UP, Rudolph M, Apfel C, Robl C, Langenegger D, Hoyer D, Jaun B, Ebert MO, Alpermann T, Seebach D, Weigand W. Reaction of Fe3(CO)12 with octreotide—chemical, electrochemical and biological investigations. Dalton Trans 2010; 39:3065-71. [DOI: 10.1039/b921299j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Vannucci AK, Wang S, Nichol GS, Lichtenberger DL, Evans DH, Glass RS. Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of an [FeFe] hydrogenase inspired complex. Dalton Trans 2010; 39:3050-6. [DOI: 10.1039/b921067a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Felton GA, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.03.017] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Yamaguchi T, Masaoka S, Sakai K. Hydrogen Production from Water Catalyzed by an Air-stable Di-iron Complex with a Bio-relevant Fe2(μ-S)2Core. CHEM LETT 2009. [DOI: 10.1246/cl.2009.434] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Yamaguchi T, Masaoka S, Sakai K. Diaqua-(1,4,7,10,13-penta-oxacyclo-penta-deca-ne)iron(II) bis-(μ-cis-1,2-dicyano-1,2-ethyl-enedithiol-ato)bis-[(cis-1,2-dicyano-1,2-ethyl-enedithiol-ato)ferrate(III)] 1,4,7,10,13-penta-oxacyclo-penta-decane disolvate. Acta Crystallogr Sect E Struct Rep Online 2008; 64:m1557-8. [PMID: 21581166 PMCID: PMC2959872 DOI: 10.1107/s1600536808036805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/08/2008] [Indexed: 11/22/2022]
Abstract
The title compound, [Fe(C10H20O5)(H2O)2][Fe2(C4N2S2)4]·2C10H20O5, consists of an [FeII(15-crown-5)(H2O)2]2+ cation, sandwiched between and O—H⋯O hydrogen bonded by two additional 15-crown-5 ether molecules and two independent [FeIII(mnt)2]− anions, where 15-crown-5 ether denotes 1,4,7,10,13-pentaoxacyclopentadecane and mnt denotes cis-1,2-dicyano-1,2-ethylenedithiolate. Each independent [FeIII(mnt)2]− unit forms a centrosymmetric dimer supported by two intermonomer FeIII—S bonds [Fe—S = 2.4715 (9) and 2.4452 (9) Å]. In the crystal structure, the dimers form one-dimensional π–π stacks along the a axis, with an interplanar separation of 3.38 (6) Å.
Collapse
Affiliation(s)
- Toshiki Yamaguchi
- Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
44
|
Apfel UP, Halpin Y, Gottschaldt M, Görls H, Vos JG, Weigand W. Functionalized Sugars as Ligands towards Water-Soluble [Fe-only] Hydrogenase Models. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800720] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Borg SJ, Ibrahim SK, Pickett CJ, Best SP. Electrocatalysis of hydrogen evolution by synthetic diiron units using weak acids as the proton source: Pathways of doubtful relevance to enzymic catalysis by the diiron subsite of [FeFe] hydrogenase. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Li P, Wang M, Pan J, Chen L, Wang N, Sun L. [FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. J Inorg Biochem 2008; 102:952-9. [DOI: 10.1016/j.jinorgbio.2007.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/12/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
|
47
|
Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L. Visible Light-Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired [2Fe2S] Complexes. Inorg Chem 2008; 47:2805-10. [DOI: 10.1021/ic702010w] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Na
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116012 Dalian, China, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden, and Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044, Stockholm, Sweden
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116012 Dalian, China, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden, and Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044, Stockholm, Sweden
| | - Jingxi Pan
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116012 Dalian, China, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden, and Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044, Stockholm, Sweden
| | - Pan Zhang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116012 Dalian, China, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden, and Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044, Stockholm, Sweden
| | - Björn Åkermark
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116012 Dalian, China, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden, and Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044, Stockholm, Sweden
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116012 Dalian, China, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden, and Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044, Stockholm, Sweden
| |
Collapse
|
48
|
Li P, Wang M, Chen L, Wang N, Zhang T, Sun L. Supramolecular self-assembly of a [2Fe2S] complex with a hydrophilic phosphine ligand. CrystEngComm 2008. [DOI: 10.1039/b713159c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Li P, Wang M, He C, Liu X, Jin K, Sun L. Phosphane and Phosphite Unsymmetrically Disubstituted Diiron Complexes Related to the Fe-Only Hydrogenase Active Site. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601184] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Morvan D, Capon JF, Gloaguen F, Le Goff A, Marchivie M, Michaud F, Schollhammer P, Talarmin J, Yaouanc JJ, Pichon R, Kervarec N. N-Heterocyclic Carbene Ligands in Nonsymmetric Diiron Models of Hydrogenase Active Sites. Organometallics 2007. [DOI: 10.1021/om061173l] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|