Martínez-Arranz S, Presa-Soto D, Carriedo GA, Presa Soto A, Albéniz AC. Polyphosphazenes for the Stille reaction: a new type of recyclable stannyl reagent.
Dalton Trans 2016;
45:2227-36. [PMID:
26583466 DOI:
10.1039/c5dt02670a]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A random phosphazene copolymer {[N = P((CH2)7-Br)Ph]0.5[N = PMePh]0.5}n (2) and a block copolyphosphazene {[N = P((CH2)7-Br)Ph]0.5[N = PMePh]0.5}45-b-[N = P(O2C12H8)]55 (5), having a branch with two randomly distributed units, have been synthesized and used as precursors for the stannyl derivatives {[N = P((CH2)7-SnBu2An)Ph]0.5[N = PMePh]0.5}n (3) and {[N = P((CH2)7-SnBu2An)Ph]0.5[N = PMePh]0.5}45-b-[N = P(O2C12H8)]55 (6, An = p-MeOC6H4). Polymers 3 and 6 were tested as recyclable tin reagents in the Stille cross-coupling reaction with ArI, using various Pd catalysts and different experimental conditions. Polymer 6 can be recycled without a significant release of tin, but its efficiency decreased after three consecutive cycles. This effect was explained by studying the self-assembly of the polymer under the same conditions used for the catalytic experiments, which evidenced the progressive coalescence of the polymeric vesicles (polymersomes) leading to stable and bigger core-shell aggregates by the attraction of the [N = P(O2C12H8)] rich membranes, thus decreasing the accessibility of the tin active centers.
Collapse