1
|
Khan FM, Abbasi MA, Aziz‐ur‐Rehman, Siddiqui SZ, Sadiq Butt AR, Raza H, Zafar A, Ali Shah SA, Shahid M, Seo S. Convergent synthesis of carbonic anhydrase inhibiting bi‐heterocyclic benzamides: Structure–activity relationship and mechanistic explorations through enzyme inhibition, kinetics, and computational studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Farhan M. Khan
- Department of Chemistry Government College University Lahore Pakistan
| | | | - Aziz‐ur‐Rehman
- Department of Chemistry Government College University Lahore Pakistan
| | | | | | - Hussain Raza
- College of Natural Sciences, Department of Biological Science Kongju National University Gongju South Korea
| | - Ayesha Zafar
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Syed A. Ali Shah
- Faculty of Pharmacy and Atta‐ur‐Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3 Universiti Teknologi MARA, Puncak Alam Campus Bandar Puncak Alam Malaysia
| | - Muhammad Shahid
- Department of Biochemistry University of Agriculture Faisalabad Pakistan
| | - Sung‐Yum Seo
- College of Natural Sciences, Department of Biological Science Kongju National University Gongju South Korea
| |
Collapse
|
2
|
Muñoz-Osses M, Quiroz J, Vásquez-Martínez Y, Flores E, Navarrete E, Godoy F, Torrent C, Cortez-San Martín M, Gómez A, Mascayano C. Evaluation of cyrhetrenyl and ferrocenyl precursors as 5-lipoxygenase inhibitors – biological and computational studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of precursors derived from ferrocene and cyrhetrene as inhibitors of enzyme 5-hLOX.
Collapse
Affiliation(s)
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP)
- Escuela de Medicina
- Facultad de Ciencias Médicas
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | | - Fernando Godoy
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | - Claudia Torrent
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | | | - Alejandra Gómez
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | |
Collapse
|
3
|
Fischer-Durand N, Lizinska D, Guérineau V, Rudolf B, Salmain M. ‘Clickable’ cyclopentadienyl iron carbonyl complexes for bioorthogonal conjugation of mid-infrared labels to a model protein and PAMAM dendrimer. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathalie Fischer-Durand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| | - Daria Lizinska
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301; Université Paris-Sud, Université Paris-Saclay; Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogna Rudolf
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| |
Collapse
|
4
|
Abe S, Ito N, Maity B, Lu C, Lu D, Ueno T. Coordination design of cadmium ions at the 4-fold axis channel of the apo-ferritin cage. Dalton Trans 2019; 48:9759-9764. [PMID: 30993287 DOI: 10.1039/c9dt00609e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spherical protein cages with highly symmetrical structures provide unique environments for the conjugation of metal ions and metal nanoparticles. Ferritin has been widely studied as a template for the coordination of metal ions and metal nanoparticles in fundamental research and applications. However, it remains difficult to design metal coordination sites precisely. In this work, we describe the design and construction of new metal coordination sites by introducing Cys residues at the 4-fold symmetrical hydrophobic channel of apo-ferritin. X-ray crystal structure analyses of the mutants containing Cd(ii) ions show that the four or eight binding sites for Cd(ii) ions are located at the 4-fold symmetrical axis channel of apo-ferritin. It was found that the coordination number and configuration of Cd(ii) ions can be varied by adjusting the positions of the Cys residues at the symmetrical channels of the apo-ferritin cage.
Collapse
Affiliation(s)
- Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Djukić M, Jeremić MS, Jelić R, Klisurić O, Kojić V, Jakimov D, Djurdjević P, Matović ZD. Further insights into ruthenium(II) piano-stool complexes with N-alkyl imidazoles. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Abe S, Atsumi K, Yamashita K, Hirata K, Mori H, Ueno T. Structure of in cell protein crystals containing organometallic complexes. Phys Chem Chem Phys 2018; 20:2986-2989. [PMID: 29138769 DOI: 10.1039/c7cp06651a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular structures of in cell protein crystals containing organometallic Pd(allyl) complexes were determined by performing microfocus X-ray diffraction experiments. The coordination sites in a polyhedrin mutant with deletion of selected amino acid residues located at the interface of the polyhedrin trimer are dramatically altered compared to those of the wild-type composite.
Collapse
Affiliation(s)
- Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Yu P, Song L, Qin J, Wang J. Capturing the photo-signaling state of a photoreceptor in a steady-state fashion by binding a transition metal complex. Protein Sci 2017; 26:2249-2256. [PMID: 28856755 DOI: 10.1002/pro.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/26/2017] [Indexed: 11/08/2022]
Abstract
Binding a small molecule to proteins causes conformational changes, but often to a limited extent. Here, we demonstrate that the interaction of a CO-releasing molecule (CORM3) with a photoreceptor photoactive yellow protein (PYP) drives large structural changes in the latter. The interaction of CORM3 and a mutant of PYP, Met100Ala, not only trigger the isomerization of its chromophore, p-coumaric acid, from its anionic trans configuration to a protonated cis configuration, but also increases the content of β-sheet at the cost of α-helix and random coil in the secondary structure of the protein. The CORM3 derived Met100Ala is found to highly resemble the signaling state, which is one of the key photo-intermediates of this photoactive protein, in both protein local conformation and chromophore configuration. The organometallic reagents hold promise as protein engineering tools. This work highlights a novel approach to structurally accessing short lived intermediates of proteins in a steady-state fashion.
Collapse
Affiliation(s)
- Pengyun Yu
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
8
|
Complex formation between [(η6-p-cym)Ru(H2O)3]2+ and oligopeptides containing three histidyl moieties. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Hogeback J, Schwarzer M, Wehe CA, Sperling M, Karst U. Investigating the adduct formation of organic mercury species with carbonic anhydrase and hemoglobin from human red blood cell hemolysate by means of LC/ESI-TOF-MS and LC/ICP-MS. Metallomics 2016; 8:101-7. [PMID: 26442983 DOI: 10.1039/c5mt00186b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The interaction of mercury species with human erythrocytes is studied to investigate possible high molecular binding partners for mercury species. Human blood hemolysate was spiked with methylmercury and investigated by means of liquid chromatography (LC) coupled to electrospray ionization time of flight mass spectrometry (ESI-ToF-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Beside adduct formation of mercury species with hemoglobin, the main compound of the erythrocytes, mercury binding to the enzyme carbonic anhydrase was revealed. Due to an enzymatic digest of the protein-mercury adduct, the binding site at the free thiol group of the protein was identified. These results indicate that carbonic anhydrase might play a role in mercury toxicity.
Collapse
Affiliation(s)
- Jens Hogeback
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Miriam Schwarzer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Christoph A Wehe
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany. and European Virtual Institute for Speciation Analysis (EVISA), Mendelstr. 11, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| |
Collapse
|
10
|
Khattri RB, Morris DL, Davis CM, Bilinovich SM, Caras AJ, Panzner MJ, Debord MA, Leeper TC. An NMR-Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor. Molecules 2016; 21:molecules21070846. [PMID: 27438815 PMCID: PMC6274284 DOI: 10.3390/molecules21070846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Selective hits for the glutaredoxin ortholog of Brucella melitensis are determined using STD NMR and verified by trNOE and (15)N-HSQC titration. The most promising hit, RK207, was docked into the target molecule using a scoring function to compare simulated poses to experimental data. After elucidating possible poses, the hit was further optimized into the lead compound by extension with an electrophilic acrylamide warhead. We believe that focusing on selectivity in this early stage of drug discovery will limit cross-reactivity that might occur with the human ortholog as the lead compound is optimized. Kinetics studies revealed that lead compound 5 modified with an ester group results in higher reactivity than an acrylamide control; however, after modification this compound shows little selectivity for bacterial protein versus the human ortholog. In contrast, hydrolysis of compound 5 to the acid form results in a decrease in the activity of the compound. Together these results suggest that more optimization is warranted for this simple chemical scaffold, and opens the door for discovery of drugs targeted against glutaredoxin proteins-a heretofore untapped reservoir for antibiotic agents.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| | - Daniel L Morris
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| | - Caroline M Davis
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| | - Stephanie M Bilinovich
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Andrew J Caras
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| | - Matthew J Panzner
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| | - Michael A Debord
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| | - Thomas C Leeper
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
11
|
Electron donor-acceptor properties of substituted pyridine ligands on fac-tricarbonylrhenium(I) systems. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Chanawanno K, Rhoda HM, Hasheminasab A, Crandall LA, King AJ, Herrick RS, Nemykin VN, Ziegler CJ. Using Hydrazine to Link Ferrocene with Re(CO) 3: A Modular Approach. J Organomet Chem 2016; 818:145-153. [PMID: 28496284 DOI: 10.1016/j.jorganchem.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acetyl ferrocene and diacetyl ferrocene both readily react with an excess of hydrazine to afford the corresponding hydrazone compounds. These compounds can then be linked to Re(CO)3 via a metal-mediated Schiff base reaction, resulting in a series of ferrocene-Re(CO)3 conjugates with different stoichiometries. Conjugates with 1:1, 1:2, and 2:1 ferrocene: Re(CO)3 ratios can be produced via this "modular" type synthesis approach. Several examples of these conjugates were structurally characterized, and their spectroscopic, electrochemical, and spectroelectrochemical behaviors were investigated. The electronic structures of these compounds were also probed using DFT and TDDFT calculations.
Collapse
Affiliation(s)
| | - Hannah M Rhoda
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | | | - Laura A Crandall
- Department of Chemistry, University of Akron, OH 44325-3601, USA
| | - Alexander J King
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Richard S Herrick
- Department of Chemistry, College of the Holy Cross, Box C, Worcester, MA 01610- 2395, USA
| | - Victor N Nemykin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | | |
Collapse
|
13
|
Chanawanno K, Kondeti V, Caporoso J, Paruchuri S, Leeper TC, Herrick RS, Ziegler CJ. Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent. Dalton Trans 2016; 45:4729-35. [PMID: 26863280 DOI: 10.1039/c5dt04694g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.
Collapse
|
14
|
Caterino M, Petruk AA, Vergara A, Ferraro G, Marasco D, Doctorovich F, Estrin DA, Merlino A. Mapping the protein-binding sites for iridium(iii)-based CO-releasing molecules. Dalton Trans 2016; 45:12206-14. [DOI: 10.1039/c6dt01685e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography have been used to investigate the reaction of CO-releasing molecule Cs2IrCl5CO with the model protein RNase A.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ariel A. Petruk
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Alessandro Vergara
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages
- Napoli
- Italy
- Department of Pharmacy
- University of Naples Federico II
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Dario A. Estrin
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
15
|
Guillén E, González A, López C, Basu PK, Ghosh A, Font-Bardía M, Calvis C, Messeguer R. Heterodi- (Fe, Pd/Pt) and Heterotrimetallic (Fe2, Pd) Complexes Derived from 4-(Ferrocenylmethyl)-N-(2-methoxyethyl)-3,5-diphenylpyrazole as Potential Antitumoral Agents. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Pordea A. Metal-binding promiscuity in artificial metalloenzyme design. Curr Opin Chem Biol 2015; 25:124-32. [PMID: 25603469 DOI: 10.1016/j.cbpa.2014.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/16/2023]
Abstract
This review presents recent examples of metal-binding promiscuity in protein scaffolds and highlights the effect of metal variation on catalytic functionality. Naturally evolved binding sites, as well as unnatural amino acids and cofactors can bind a diverse range of metals, including non-biological transition elements. Computational screening and rational design have been successfully used to create promiscuous binding-sites. Incorporation of non-native metals into proteins expands the catalytic range of transformations catalysed by enzymes and enhances their potential for application in chemicals synthesis.
Collapse
Affiliation(s)
- Anca Pordea
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
17
|
Zampino AP, Masters FM, Bladholm EL, Panzner MJ, Berry SM, Leeper TC, Ziegler CJ. Mercury metallation of the copper protein azurin and structural insight into possible heavy metal reactivity. J Inorg Biochem 2014; 141:152-160. [DOI: 10.1016/j.jinorgbio.2014.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
|
18
|
Petruk AA, Vergara A, Marasco D, Bikiel D, Doctorovich F, Estrin DA, Merlino A. Interaction between Proteins and Ir Based CO Releasing Molecules: Mechanism of Adduct Formation and CO Release. Inorg Chem 2014; 53:10456-62. [DOI: 10.1021/ic501498g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ariel A. Petruk
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Alessandro Vergara
- Department
of Chemical Sciences, University of Naples Federico II, via Cintia I-80126, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
- Department of Pharmacy, CIRPEB: Centro Interuniversitario
di Ricerca sui Peptidi Bioattivi- University of Naples Federico II, DFM-Scarl, Via Mezzocannone, 16 80134, Napoli, Italy
| | - Damian Bikiel
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Dario A. Estrin
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples Federico II, via Cintia I-80126, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
| |
Collapse
|
19
|
Chukwu JU, López C, González A, Font-Bardía M, Calvet MT, Messeguer R, Calvis C. Pd(II) complexes with N-substituted pyrazoles as ligands. The influence of the R group [OMe versus NMe2] of [1-{R–(CH2)2–}-3,5-Ph2–(C3HN2)] on their cytotoxic activity on breast cancer cell lines. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|