1
|
Grotemeyer EN, Aghaei Z, Jackson TA. Spectroscopic Properties and Reactivity of a Mn III-Hydroperoxo Complex that is Stable at Room Temperature. Chemistry 2024:e202403051. [PMID: 39259036 DOI: 10.1002/chem.202403051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
Manganese catalysts that activate hydrogen peroxide have seen increased use in organic transformations, such as olefin epoxidation and alkane C-H bond oxidation. Proposed mechanisms for these catalysts involve the formation and activation of MnIII-hydroperoxo intermediates. Examples of well-defined MnIII-hydroperoxo complexes are rare, and the properties of these species are often inferred from MnIII-alkylperoxo analogues. In this study, we show that the reaction of the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ (1) with hydrogen peroxide and acid results in the formation of a dark-green MnIII-hydroperoxo species [MnIII(OOH)(6Medpaq)]+ (2). The formulation of 2 is based on electronic absorption, 1H NMR, IR, and ESI-MS data. The thermal decay of 2 follows a first order process, and variable-temperature kinetic studies of the decay of 2 yielded activation parameters that could be compared with those of a MnIII-alkylperoxo analogue. Complex 2 reacts with the hydrogen-atom donor TEMPOH two-fold faster than the MnIII-hydroxo complex 1. Complex 2 also oxidizes PPh3, and this MnIII-hydroperoxo species is 600-fold more reactive with this substrate than its MnIII-alkylperoxo analogue [MnIII(OOtBu)(6Medpaq)]+. DFT and time-dependent (TD) DFT computations are used to compare the electronic structure of 2 with similar MnIII-hydroperoxo and MnIII-alkylperoxo complexes.
Collapse
Affiliation(s)
- Elizabeth N Grotemeyer
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, 66045, Lawrence, KS, USA
| | - Zahra Aghaei
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, 66045, Lawrence, KS, USA
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, 66045, Lawrence, KS, USA
| |
Collapse
|
2
|
Lachquer F, Oulmekki A, Toyir J. Selective direct oxidation of 1-butanol into acetal using hydrogen peroxide and Cs 5MPW 11(H 2O)O 39 (M=Fe, Co, Cu) catalysts. Chempluschem 2024; 89:e202300772. [PMID: 38372455 DOI: 10.1002/cplu.202300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Direct catalytic oxidation of alcohols to acetals in one step process is very attractive, because the two steps process leads firstly to aldehydes, which are unstable species serving as reactive intermediates to generate several by-products reducing process efficiency and selectivity. In this work, a new selective catalytic acetalization of 1-butanol into 1-1-dibutoxybutane acetal using H2O2 in one step process is investigated using Keggin-type polyoxometalates catalysts. The materials developed consisted of new lacunary phophotungstate salts Cs5MPW11(H2O)O39 (M=Fe, Co and Cu) which were prepared by inorganic solution condensation method and characterized using XRD, IR, SEM and EDX analysis to verify their structure, surface morphology and chemical composition. Cs5CuPW11(H2O)O39 catalyst allowed the highest performance for the oxidation of 1-butanol at 60 °C using H2O2 excess with a yield approaching 92 % and a turnover number of 784. Such activity is related to a bifunctional behavior of the catalyst as superacid and redox operating system and the synergistic effect created between the [PW11O39]7- Keggin framework, Cs+ and Cu2+.
Collapse
Affiliation(s)
- Farah Lachquer
- Laboratoire des Procédés, Matériaux et Environnement (LPME) Faculté des Sciences et Techniques de Fès, Université Sidi Mohamed Ben Abdellah, Fès, BP. 2202, Morocco
| | - Abdallah Oulmekki
- Laboratoire des Procédés, Matériaux et Environnement (LPME) Faculté des Sciences et Techniques de Fès, Université Sidi Mohamed Ben Abdellah, Fès, BP. 2202, Morocco
| | - Jamil Toyir
- Laboratoire des Procédés, Matériaux et Environnement (LPME) Faculté Polydisciplinaire (FP-Taza), Université Sidi Mohamed Ben Abdellah, Taza, BP. 1223, Morocco
| |
Collapse
|
3
|
Singh P, Massie AA, Denler MC, Lee Y, Mayfield JR, Lomax MJA, Singh R, Nordlander E, Jackson TA. C-H Bond Oxidation by Mn IV-Oxo Complexes: Hydrogen-Atom Tunneling and Multistate Reactivity. Inorg Chem 2024; 63:7754-7769. [PMID: 38625043 DOI: 10.1021/acs.inorgchem.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The reactivity of six MnIV-oxo complexes in C-H bond oxidation has been examined using a combination of kinetic experiments and computational methods. Variable-temperature studies of the oxidation of 9,10-dihydroanthracene (DHA) and ethylbenzene by these MnIV-oxo complexes yielded activation parameters suitable for evaluating electronic structure computations. Complementary kinetic experiments of the oxidation of deuterated DHA provided evidence for hydrogen-atom tunneling in C-H bond oxidation for all MnIV-oxo complexes. These results are in accordance with the Bell model, where tunneling occurs near the top of the transition-state barrier. Density functional theory (DFT) and DLPNO-CCSD(T1) computations were performed for three of the six MnIV-oxo complexes to probe a previously predicted multistate reactivity model. The DFT computations predicted a thermal crossing from the 4B1 ground state to a 4E state along the C-H bond oxidation reaction coordinate. DLPNO-CCSD(T1) calculations further confirm that the 4E transition state offers a lower energy barrier, reinforcing the multistate reactivity model for these complexes. We discuss how this multistate model can be reconciled with recent computations that revealed that the kinetics of C-H bond oxidation by this set of MnIV-oxo complexes can be well-predicted on the basis of the thermodynamic driving force for these reactions.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Yuri Lee
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Markell J A Lomax
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Singh P, Lee Y, Mayfield JR, Singh R, Denler MC, Jones SD, Day VW, Nordlander E, Jackson TA. Enhanced Understanding of Structure-Function Relationships for Oxomanganese(IV) Complexes. Inorg Chem 2023; 62:18357-18374. [PMID: 37314463 DOI: 10.1021/acs.inorgchem.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of manganese(II) and oxomanganese(IV) complexes supported by neutral, pentadentate ligands with varied equatorial ligand-field strength (N3pyQ, N2py2I, and N4pyMe2) were synthesized and then characterized using structural and spectroscopic methods. On the basis of electronic absorption spectroscopy, the [MnIV(O)(N4pyMe2)]2+ complex has the weakest equatorial ligand field among a set of similar MnIV-oxo species. In contrast, [MnIV(O)(N2py2I)]2+ shows the strongest equatorial ligand-field strength for this same series. We examined the influence of these changes in electronic structure on the reactivity of the oxomanganese(IV) complexes using hydrocarbons and thioanisole as substrates. The [MnIV(O)(N3pyQ)]2+ complex, which contains one quinoline and three pyridine donors in the equatorial plane, ranks among the fastest MnIV-oxo complexes in C-H bond and thioanisole oxidation. While a weak equatorial ligand field has been associated with high reactivity, the [MnIV(O)(N4pyMe2)]2+ complex is only a modest oxidant. Buried volume plots suggest that steric factors dampen the reactivity of this complex. Trends in reactivity were examined using density functional theory (DFT)-computed bond dissociation free energies (BDFEs) of the MnIIIO-H and MnIV ═ O bonds. We observe an excellent correlation between MnIV═O BDFEs and rates of thioanisole oxidation, but more scatter is observed between hydrocarbon oxidation rates and the MnIIIO-H BDFEs.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Yuri Lee
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Shannon D Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Yu FL, Liu MX, Yuan B, Xie CX, Yu ST. Selective Oxidation of Primary Alcohols to Carboxylic Acids Using Lacunary Polyoxometalates Catalysts and Hydrogen Peroxide. Catal Letters 2022. [DOI: 10.1007/s10562-022-04105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Catalytic Oxidations with Meta-Chloroperoxybenzoic Acid (m-CPBA) and Mono- and Polynuclear Complexes of Nickel: A Mechanistic Outlook. Catalysts 2021. [DOI: 10.3390/catal11101148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Selective catalytic functionalization of organic substrates using peroxides as terminal oxidants remains a challenge in modern chemistry. The high complexity of interactions between metal catalysts and organic peroxide compounds complicates the targeted construction of efficient catalytic systems. Among the members of the peroxide family, m-chloroperoxybenzoic acid (m-CPBA) exhibits quite complex behavior, where numerous reactive species could be formed upon reaction with a metal complex catalyst. Although m-CPBA finds plenty of applications in fine organic synthesis and catalysis, the factors that discriminate its decomposition routes under catalytic conditions are still poorly understood. The present review covers the advances in catalytic C–H oxidation and olefine epoxidation with m-CPBA catalyzed by mono- and polynuclear complexes of nickel, a cheap and abundant first-row transition metal. The reaction mechanisms are critically discussed, with special attention to the O–O bond splitting route. Selectivity parameters using recognized model hydrocarbon substrates are summarized and important factors that could improve further catalytic studies are outlined.
Collapse
|
7
|
Liu M, Yu F, Yuan B, Xie C, Yu S. Oxidation of 1-propanol to propionic acid with hydrogen peroxide catalysed by heteropolyoxometalates. BMC Chem 2021; 15:23. [PMID: 33794972 PMCID: PMC8017713 DOI: 10.1186/s13065-021-00750-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Propionic acid as a very valuable chemical is in high demand, and it is industrially produced via the oxo-synthesis of ethylene or ethyl alcohol and via the oxidation of propionaldehyde with oxygen. It is urgent to discover a new preparation method for propionic acid via a green route. Recyclable amino-acid-based organic-inorganic heteropolyoxometalates were first used to high-efficiently catalyse the selective oxidation of 1-propanol to propionic acid with H2O2 as an oxidant. RESULT A series of amino-acid-based heteropoly catalysts using different types of amino acids and heteropoly acids were synthesized, and the experimental results showed proline-based heteropolyphosphatotungstate (ProH)3[PW12O40] exhibited excellent catalytic activity for the selective catalytic oxidation of 1-propanol to propionic acid owing to its high capacity as an oxygen transfer agent and suitable acidity. Under optimized reaction conditions, the conversion of 1-propanol and the selectivity of propionic acid reached 88% and 75%, respectively. Over four cycles, the conversion remained at >80%, and the selectivity was >60%. (ProH)3[PW12O40] was also used to catalyse the oxidations of 1-butanol, 1-pentanol, 1-hexanol, and benzyl alcohol. All the reactions had high conversions, with the corresponding acids being the primary oxidation product. CONCLUSIONS Proline-based heteropolyoxometalate (ProH)3[PW12O40] has been successfully used to catalyse the selective oxidation of primary alcohols to the corresponding carboxylic acids with H2O2 as the oxidant. The new developed catalytic oxidation system is mild, high-efficient, and reliable. This study provides a potential green route for the preparation propionic acid.
Collapse
Affiliation(s)
- Minxue Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fengli Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Bing Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
8
|
Masferrer-Rius E, Li F, Lutz M, Klein Gebbink RJM. Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; a focus on enantioselective benzylic oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01642c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of highly electron-rich manganese complexes for enantioselective benzylic oxidation (and asymmetric epoxidation) is described, to provide chiral benzylic alcohols and epoxides in good yields and enantioselectivites.
Collapse
Affiliation(s)
- Eduard Masferrer-Rius
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fanshi Li
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
9
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Recent advances in the catalytic oxidation of alkene and alkane substrates using immobilized manganese complexes with nitrogen containing ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Denler MC, Wijeratne GB, Rice DB, Colmer HE, Day VW, Jackson TA. Mn III-Peroxo adduct supported by a new tetradentate ligand shows acid-sensitive aldehyde deformylation reactivity. Dalton Trans 2018; 47:13442-13458. [PMID: 30183042 PMCID: PMC6176719 DOI: 10.1039/c8dt02300j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new tetradentate L7BQ ligand (L7BQ = 1,4-di(quinoline-8-yl)-1,4-diazepane) has been synthesized and shown to support MnII and MnIII-peroxo complexes. X-ray crystallography of the [MnII(L7BQ)(OTf)2] complex shows a monomeric MnII center with the L7BQ ligand providing four donor nitrogen atoms in the equatorial field, with two triflate ions bound in the axial positions. When this species is treated with H2O2 and Et3N at -40 °C, a MnIII-peroxo adduct, [MnIII(O2)(L7BQ)]+ is formed. The formation of this new intermediate is supported by a variety of spectroscopic techniques, including electronic absorption, Mn K-edge X-ray absorption and electron paramagnetic resonance methods. Evaluation of extended X-ray absorption fine structure data for [MnIII(O2)(L7BQ)]+ resolved Mn-O bond distances of 1.85 Å, which are on the short end of those previously reported for crystallographically characterized MnIII-peroxo adducts. An analysis of the X-ray pre-edge region of [MnIII(O2)(L7BQ)]+ revealed a large pre-edge area of 20.8 units. Time-dependent density functional theory computations indicate that the pre-edge intensity is due to Mn 4p-3d mixing caused by geometric distortions from centrosymmetry induced by both the peroxo and L7BQ ligands. The reactivity of [MnIII(O2)(L7BQ)]+ towards aldehydes was assessed through reaction with cyclohexanecarboxaldehyde and 2-phenylpropionaldehyde. From these experiments, it was determined that [MnIII(O2)(L7BQ)]+ only reacts with aldehydes in the presence of acid. Specifically, the addition of cyclohexanecarboxylic acid to [MnIII(O2)(L7BQ)]+ converts the MnIII-peroxo adduct to a new intermediate that could be responsible for the observed aldehyde deformylation activity. These observations underscore the challenges in identifying the reactive metal species in aldehyde deformylation reactions.
Collapse
Affiliation(s)
- Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Nesterova OV, Nesterov DS, Vranovičová B, Boča R, Pombeiro AJL. Heterometallic Cu IIFe III and Cu IIMn III alkoxo-bridged complexes revealing a rare hexanuclear M 6(μ-X) 7(μ 3-X) 2 molecular core. Dalton Trans 2018; 47:10941-10952. [PMID: 30019733 DOI: 10.1039/c8dt02290a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel hexanuclear complexes [Cu4Fe2(OH)(Piv)4(tBuDea)4Cl]·0.5CH3CN (1) and [Cu4Mn2(OH)(Piv)4(tBuDea)4Cl] (2) were prepared through one-pot self-assembly reactions of copper powder and iron(ii) or manganese(ii) chloride with N-tert-butyldiethanolamine (H2tBuDea) and pivalic acid (HPiv) in acetonitrile. Crystallographic studies revealed the uncommon molecular core type M6(μ-X)7(μ3-X)2 in 1 and 2, which can be viewed as a combination of two trimetallic M3(μ-X)2(μ3-X) fragments joined by three bridging atoms. The analysis and classification of the hexanuclear complexes having a M3(μ-X)2(μ3-X) moiety as a core forming fragment using data from the Cambridge Structural Database (CSD) were performed. Variable-temperature (1.8-300 K) magnetic susceptibility measurements of 1 showed a decrease of the effective magnetic moment value at low temperature, indicative of antiferromagnetic coupling between the magnetic centres (JFe-Cu/hc = -6.9 cm-1, JCu-Cu/hc = -4.1 cm-1, JFe-Fe/hc = -24.2 cm-1). Complex 1 acts as a catalyst in the reaction of mild oxidation of cyclohexane with H2O2, showing the yields of products, cyclohexanol and cyclohexanone, up to 17% using pyrazinecarboxylic acid as a promoter. In the oxidation of cis-1,2-dimethylcyclohexane with m-chloroperoxybenzoic acid (m-CPBA), 70% of retention of stereoconfiguration was observed for tertiary alcohols. Compound 1 also catalyses the amidation of cyclohexane with benzamide. In all three catalytic reactions the by-products were investigated in detail and discussed.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
13
|
Qiu B, Xu D, Sun Q, Miao C, Lee YM, Li XX, Nam W, Sun W. Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03601] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Qiu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqian Xu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengxia Miao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
14
|
Shul'pin GB, Vinogradov MM, Shul'pina LS. Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a review). Catal Sci Technol 2018. [DOI: 10.1039/c8cy00659h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, osmium complexes have found applications not only in thecis-hydroxylation of olefins but also very efficient in the oxygenation of C–H compounds (saturated and aromatic hydrocarbons and alcohols) by hydrogen peroxide as well as organic peroxides.
Collapse
Affiliation(s)
- Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
- Plekhanov Russian University of Economics
| | - Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
15
|
Nodzewska A, Watkinson M. Remarkable increase in the rate of the catalytic epoxidation of electron deficient styrenes through the addition of Sc(OTf)3 to the MnTMTACN catalyst. Chem Commun (Camb) 2018; 54:1461-1464. [DOI: 10.1039/c7cc09698d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sc(OTf)3 produces a remarkable enhancement in the activity of the MnTMTACN catalyst in the epoxidation of electron deficient styrenes.
Collapse
Affiliation(s)
- Aneta Nodzewska
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Michael Watkinson
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| |
Collapse
|
16
|
Sackville EV, Kociok-Köhn G, Hintermair U. Ligand Tuning in Pyridine-Alkoxide Ligated Cp*IrIII Oxidation Catalysts. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Emma V. Sackville
- Centre
for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Gabriele Kociok-Köhn
- Chemical
Characterisation and Analysis Facility, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Ulrich Hintermair
- Centre
for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| |
Collapse
|
17
|
Talsi EP, Samsonenko DG, Bryliakov KP. Asymmetric Autoamplification in the Oxidative Kinetic Resolution of Secondary Benzylic Alcohols Catalyzed by Manganese Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201700438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evgenii P. Talsi
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russian Federation
| | - Denis G. Samsonenko
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russian Federation
- Nikolaev Institute of Inorganic Chemistry; Pr. Lavrentieva 3 Novosibirsk 630090 Russian Federation
| | - Konstantin P. Bryliakov
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russian Federation
| |
Collapse
|
18
|
Buvaylo EA, Kokozay VN, Vassilyeva OY, Skelton BW, Nesterova OV, Pombeiro AJ. Copper(II) complex of the 2-pyridinecarbaldehyde aminoguanidine Schiff base: Crystal structure and catalytic behaviour in mild oxidation of alkanes. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Massie AA, Denler MC, Cardoso LT, Walker AN, Hossain MK, Day VW, Nordlander E, Jackson TA. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)‐Oxo Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - M. Kamal Hossain
- Chemical Physics Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | - Victor W. Day
- Department of Chemistry University of Kansas Lawrence KS USA
| | - Ebbe Nordlander
- Chemical Physics Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | | |
Collapse
|
20
|
Massie AA, Denler MC, Cardoso LT, Walker AN, Hossain MK, Day VW, Nordlander E, Jackson TA. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes. Angew Chem Int Ed Engl 2017; 56:4178-4182. [PMID: 28300349 DOI: 10.1002/anie.201612309] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Indexed: 11/06/2022]
Abstract
Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic MnIV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of MnIV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the MnIV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these MnIV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the MnIII/IV reduction potentials.
Collapse
Affiliation(s)
- Allyssa A Massie
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa C Denler
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - Ashlie N Walker
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - M Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | - Victor W Day
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | | |
Collapse
|
21
|
Jana S, Ghosh M, Ambule M, Sen Gupta S. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope. Org Lett 2017; 19:746-749. [PMID: 28134527 DOI: 10.1021/acs.orglett.6b03359] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate FeV(O) to be the active oxidant during these reactions.
Collapse
Affiliation(s)
- Sandipan Jana
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Munmun Ghosh
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Mayur Ambule
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science, Education and Research Kolkata , Mohanpur 741246, India
| |
Collapse
|
22
|
Shul’pin GB, Nesterov DS, Shul’pina LS, Pombeiro AJ. A hydroperoxo-rebound mechanism of alkane oxidation with hydrogen peroxide catalyzed by binuclear manganese(IV) complex in the presence of an acid with involvement of atmospheric dioxygen. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Nesterova OV, Nesterov DS, Krogul-Sobczak A, Guedes da Silva MFC, Pombeiro AJ. Synthesis, crystal structures and catalytic activity of Cu(II) and Mn(III) Schiff base complexes: Influence of additives on the oxidation catalysis of cyclohexane and 1-phenylehanol. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Direct Selective Oxidative Functionalization of C-H Bonds with H₂O₂: Mn-Aminopyridine Complexes Challenge the Dominance of Non-Heme Fe Catalysts. Molecules 2016; 21:molecules21111454. [PMID: 27809257 PMCID: PMC6273867 DOI: 10.3390/molecules21111454] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022] Open
Abstract
Non-heme iron(II) complexes are widespread synthetic enzyme models, capable of conducting selective C–H oxidation with H2O2 in the presence of carboxylic acid additives. In the last years, structurally similar manganese(II) complexes have been shown to catalyze C–H oxidation with similarly high selectivity, and with much higher efficiency. In this mini-review, recent catalytic and mechanistic data on the selective C–H oxygenations with H2O2 in the presence of manganese complexes are overviewed. A distinctive feature of catalyst systems of the type Mn complex/H2O2/carboxylic is the existence of two alternative reaction pathways (as found for the oxidation of cumenes), one leading to the formation of alcohol, and the other to ester. The mechanisms of formation of the alcohol and the ester are briefly discussed.
Collapse
Affiliation(s)
- Roman V Ottenbacher
- Chemistry Department, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia.
| | - Evgenii P Talsi
- Chemistry Department, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia.
| | - Konstantin P Bryliakov
- Chemistry Department, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia.
| |
Collapse
|
25
|
|
26
|
Nesterova OV, Kopylovich MN, Nesterov DS. Stereoselective oxidation of alkanes with m-CPBA as an oxidant and cobalt complex with isoindole-based ligands as catalysts. RSC Adv 2016. [DOI: 10.1039/c6ra14382b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coordination compound of cobalt catalyses hydroxylation of inert C–H bonds with 98% retention of stereoconfiguration of alkane skeleton.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Maximilian N. Kopylovich
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Dmytro S. Nesterov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
27
|
Bilyachenko AN, Levitsky MM, Yalymov AI, Korlyukov AA, Vologzhanina AV, Kozlov YN, Shul'pina LS, Nesterov DS, Pombeiro AJL, Lamaty F, Bantreil X, Fetre A, Liu D, Martinez J, Long J, Larionova J, Guari Y, Trigub AL, Zubavichus YV, Golub IE, Filippov OA, Shubina ES, Shul'pin GB. A heterometallic (Fe6Na8) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra07081g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The exotic “Asian Lantern” heterometallic cage silsesquioxane [(PhSiO1.5)20(FeO1.5)6(NaO0.5)8(n-BuOH)9.6(C7H8)] (I) was obtained and characterized by X-ray diffraction, EXAFS, topological analyses and DFT calculation.
Collapse
|
28
|
Hazra S, Ribeiro APC, Guedes da Silva MFC, Nieto de Castro CA, Pombeiro AJL. Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions. Dalton Trans 2016; 45:13957-68. [DOI: 10.1039/c6dt02271e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced catalytic activities of copper polymers for the peroxidative oxidation of cyclohexane are observed in an ionic liquid medium.
Collapse
Affiliation(s)
- Susanta Hazra
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - Ana P. C. Ribeiro
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | | | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| |
Collapse
|
29
|
Gryca I, Machura B, Małecki JG, Kusz J, Shul'pina LS, Ikonnikov NS, Shul'pin GB. p-Tolylimido rhenium(v) complexes with phenolate-based ligands: synthesis, X-ray studies and catalytic activity in oxidation with tert-butylhydroperoxide. Dalton Trans 2016; 45:334-51. [DOI: 10.1039/c5dt03598h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reactions of mer-[Re(p-NTol)X3(PPh3)2] with phenolate-based ligands gave 16 new rhenium(v) complexes. Only a few of them exhibited high catalytic activity.
Collapse
Affiliation(s)
- Izabela Gryca
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Jan Grzegorz Małecki
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joachim Kusz
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Nikolay S. Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
- Plekhanov Russian University of Economics
| |
Collapse
|