1
|
Chimilouski L, Slominski WH, Tillmann AI, Will D, dos Santos AM, Farias G, Martendal E, Naidek KP, Xavier FR. Homo- and Heterogeneous Benzyl Alcohol Catalytic Oxidation Promoted by Mononuclear Copper(II) Complexes: The Influence of the Ligand upon Product Conversion. Molecules 2024; 29:2634. [PMID: 38893509 PMCID: PMC11173773 DOI: 10.3390/molecules29112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The catalytic properties of three copper complexes, [Cu(en)2](ClO4)2 (1), [Cu(amp)2](ClO4)2, (2) and [Cu(bpy)2](ClO4)2 (3) (where en = ethylenediamine, amp = 2-aminomethylpyridine and bpy = 2,2'-bipyridine), were explored upon the oxidation of benzyl alcohol (BnOH). Maximized conversions of the substrates to their respective products were obtained using a multivariate analysis approach, a powerful tool that allowed multiple variables to be optimized simultaneously, thus creating a more economical, fast and effective technique. Considering the studies in a fluid solution (homogeneous), all complexes strongly depended on the amount of the oxidizing agent (H2O2), followed by the catalyst load. In contrast, time seemed to be statistically less relevant for complexes 1 and 3 and not relevant for 2. All complexes showed high selectivity in their optimized conditions, and only benzaldehyde (BA) was obtained as a viable product. Quantitatively, the catalytic activity observed was 3 > 2 > 1, which is related to the π-acceptor character of the ligands employed in the study. Density functional theory (DFT) studies could corroborate this feature by correlating the geometric index for square pyramid Cu(II)-OOH species, which should be generated in the solution during the catalytic process. Complex 3 was successfully immobilized in silica-coated magnetic nanoparticles (Fe3O4@SiO2), and its oxidative activity was evaluated through heterogenous catalysis assays. Substrate conversion promoted by 3-Fe3O4@SiO2 generated only BA as a viable product, and the supported catalyst's recyclability was proven. Reduced catalytic conversions in the presence of the radical scavenger (2,2,6,6-tetrametil-piperidi-1-nil)oxil (TEMPO) indicate that radical and non-radical mechanisms are involved.
Collapse
Affiliation(s)
- Larissa Chimilouski
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - William H. Slominski
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Ana I. Tillmann
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Daniella Will
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Aaron M. dos Santos
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Giliandro Farias
- Departamento de Química, Centro de Ciências Física e Matemáticas, Universidade Federal de Santa Catarina (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, Florianópolis 88040-900, SC, Brazil
| | - Edmar Martendal
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Karine P. Naidek
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Fernando R. Xavier
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| |
Collapse
|
2
|
Li J, Zhao S, Li C, Kawi S, Wang K, Huang J, Liu S. Single atom manganese catalyst boosting selective oxidation of alcohols with activated peroxymonosulfate. J Colloid Interface Sci 2023; 656:58-67. [PMID: 37984171 DOI: 10.1016/j.jcis.2023.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Selective oxidations are important reactions in organic synthesis for fine chemical industry and conventional methods are expensive and produce a lot of toxic wastes. Herein, we demonstrate a facile and environmentally benign technique for liquid phase selective oxidation based on graphene-supported Mn single-atom-catalyst (SAMn-G) for efficient peroxymonosulfate (PMS) activation. The active Mn component in the developed SAMn-G catalyst reached single-atomic dispersion on graphene substrate via the coordination of individual Mn atoms with the doped N from the graphene framework. SAMn-G activated PMS via a nonradical-dominated pathway, which could convert aromatic alcohols into aldehydes or ketones at a mild temperature. The SAMn-G catalyst exhibited superior conversion and aldehyde selectivity in alcohol oxidation in comparison with their counterpart catalysts possessing either homogeneous Mn ions or oxide particles. The high activation efficiency of SAMn-G is due to the synergistic effect between Mn atoms and graphene substrate, as well as the dominated reaction pathway from nonradical oxidation, which is more selective than these free radicals to oxidize the alcohols. Concerted experimental evidence indicates that the non-radical oxidation process was highly possible to follow the electron transfer mechanism by PMS/organic adsorption on the surface of the catalyst. This study provides a fundamental understanding of PMS activation mediated by single atom catalyst for organic synthesis and the achieved insights can also help the catalyst design for other liquid phase selective oxidation processes.
Collapse
Affiliation(s)
- Jiaquan Li
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2037, Australia
| | - Shiyong Zhao
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore.
| | - Kai Wang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| |
Collapse
|
3
|
Chiang CW, Li HL, Lin TJ, Chen HC, Chou YH, Chou CJ. Versatile Synthesis of Symmetric and Unsymmetric Imines via Photoelectrochemical Catalysis: Application to N-Terminal Modification of Phenylalanine. Chemistry 2023; 29:e202301379. [PMID: 37434348 DOI: 10.1002/chem.202301379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
A strategy that combines electrochemical synthesis and photoredox catalysis was reported for the efficient synthesis of imines. This approach was demonstrated to be highly versatile in producing various types of imines, including symmetric and unsymmetric imines, by exploring the impact of different substituents on the benzene ring of the arylamine. Additionally, the method was specifically applied to modify N-terminal phenylalanine residues and was found to be successful in the photoelectrochemical cross-coupling reaction between NH2 -Phe-OMe and aryl methylamines, leading to the synthesis of phenylalanine-containing imines. Therefore, this technique would present a convenient and efficient platform for synthesizing imines, with promising applications in chemical biology, drug development, and organic synthesis.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Li Li
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Ting-Jun Lin
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Chi Chen
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Yi-Hsien Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Chih-Ju Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| |
Collapse
|
4
|
Bioinspired oxidation of benzyl alcohol: The role of environment and nuclearity of the catalyst evaluated by multivariate analysis. J Inorg Biochem 2023; 240:112095. [PMID: 36535194 DOI: 10.1016/j.jinorgbio.2022.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Inspired by copper-containing enzymes such as galactose oxidase and catechol oxidase, in which distinct coordination environments and nuclearities lead to specific catalytic activities, we summarize here the catalytic properties of dinuclear and mononuclear copper species towards benzyl alcohol oxidation using a multivariate statistical approach. The new dinuclear [Cu2(μ-L1)(μ-pz)]2+ (1) is compared against the mononuclear [CuL2Cl] (2), where (L1)- and (L2)- are the respective deprotonated forms of 2,6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol, and 3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzaldehyde and (pz)- is a pyrazolato bridge. Copper(II) perchlorate (CP) is used as control. The catalytic oxidation of benzyl alcohol is pursued, aiming to assess the role of the ligand environment and nuclearity. The multivariate statistical approach allows for the search of optimal catalytic conditions, considering variables such as catalyst load, hydrogen peroxide load, and time. Species 1, 2 and CP promoted selective production of benzaldehyde at different yields, with only negligible amounts of benzoic acid. Under normalized conditions, 2 showed superior catalytic activity. This species is 3.5-fold more active than the monometallic control CP, and points out to the need for an efficient ligand framework. Species 2 is 6-fold more active than the dinuclear 1, and indicates the favored nuclearity for the conversion of alcohols into aldehydes.
Collapse
|
5
|
|
6
|
Li J, Sun H, Wang S, Dong Y, Liu S. Selective oxidation of alcohols by graphene-like carbon with electrophilic oxygen and integrated pyridinic nitrogen active sites. NANOSCALE 2021; 13:12979-12990. [PMID: 34477781 DOI: 10.1039/d1nr03157k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The selective oxidations of alcohols into corresponding aldehydes or ketones are essential reactions for organic synthesis. The development of facile, green and cost-effective protocols to accomplish selective oxidation is highly attractive. Here, we present the selective oxidation of alcohols using peroxymonosulfate (PMS) oxidants with N-doped graphene-like carbon (NG) synthesized via a metal-free approach without producing a large amount of hazardous wastes. In the tested selective oxidation reaction, over 96% of benzyl alcohol (BzOH) was converted into benzaldehyde (BzH) with high selectivity under mild conditions. The synthesized NG catalyst contains abundant electrophilic oxygen species, serving as the major active sites for the generation of reactive radicals from PMS to enable the selective oxidation of BzOH in the radical pathway. Besides, non-radical oxidation of BzOH occurs via the electron transfer through the surface coordinated complex, dominantly upon the N species. Particularly, the configuration of integrated pyridinic N is possible to create active domains for BzOH oxidation with activated PMS. This work opens a new avenue to convert metal-free raw materials into effectively functionalized carbon materials, coupled with their potential applications in the selective oxidation of alcohols.
Collapse
Affiliation(s)
- Jiaquan Li
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
| | | | | | | | | |
Collapse
|
7
|
Kumar I, Kumar R, Gupta SS, Sharma U. C 70 Fullerene Catalyzed Photoinduced Aerobic Oxidation of Benzylamines to Imines and Aldehydes. J Org Chem 2021; 86:6449-6457. [PMID: 33886326 DOI: 10.1021/acs.joc.1c00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C70 fullerene catalyzed photoinduced oxidation of benzylic amines at ambient conditions has been explored here. The developed strategy's main feature includes the additive/oxidant-free conversion of benzylic amine to corresponding imine and aldehydes. The reaction manifests broad substrate scope with excellent function group leniency and is applicable up to the gram scale. Further, symmetrical secondary amines can also be synthesized from benzylic amine in a one-pot two-step process. Various experiments and density functional theory studies revealed that the current reaction involves the generation of reactive oxygen species, single electron transfer reaction, and benzyl radical formation as key steps under photocatalytic conditions.
Collapse
Affiliation(s)
- Inder Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Shiv Shankar Gupta
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Ma Z, Li Y, Sun XQ, Yang K, Li ZY. Calixarene Promoted Transition-Metal-Catalyzed Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Babazadeh S, Kazemi Miraki M, Pazoki F, Heydari A. Tandem Oxidative Pudovik Reaction Using Fe 3O 4@SiO 2‐Metformin‐Cu ( II) as an Efficient and Recoverable Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.201904662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sahar Babazadeh
- Chemistry DepartmentTarbiat Modares University, P.O. Box 14155-4838 Tehran Iran
| | | | - Farzane Pazoki
- Chemistry DepartmentTarbiat Modares University, P.O. Box 14155-4838 Tehran Iran
| | - Akbar Heydari
- Chemistry DepartmentTarbiat Modares University, P.O. Box 14155-4838 Tehran Iran
| |
Collapse
|
10
|
Li J, Li M, Sun H, Ao Z, Wang S, Liu S. Understanding of the Oxidation Behavior of Benzyl Alcohol by Peroxymonosulfate via Carbon Nanotubes Activation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05273] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiaquan Li
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| | - Mengting Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Cu(II) and Fe(III) Complexes Derived from N-Acetylpyrazine-2-Carbohydrazide as Efficient Catalysts Towards Neat Microwave Assisted Oxidation of Alcohols. Catalysts 2019. [DOI: 10.3390/catal9121053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mononuclear Cu(II) complex [Cu((kNN′O-HL)(H2O)2] (1) was synthesized using N-acetylpyrazine-2-carbohydrazide (H2L) and characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray crystallography. Two Fe(III) complexes derived from the same ligand viz, mononuclear [Fe((kNN′O-HL)Cl2] (2) and the binuclear [Fe(kNN′O-HL)Cl(μ-OMe)]2 (3) (synthesized as reported earlier), were also used in this study. The catalytic activity of these three complexes (1–3) was examined towards the oxidation of alcohols using tert-butyl hydroperoxide (TBHP) as oxidising agent under solvent-free microwave irradiation conditions. Primary and secondary benzyl alcohols (benzyl alcohol and 1-phenylethanol), and secondary aliphatic alcohols (cyclohexanol) were used as model substrates for this study. A comparison of their catalytic efficiency was performed. Complex 1 exhibited the highest activity in the presence of TEMPO as promoter for the oxidation of 1-phenylethanol with a maximum yield of 91.3% of acetophenone.
Collapse
|
12
|
Adam MSS, Abdel-Rahman LH, Abu-Dief AM, Hashem NA. Synthesis, catalysis, antimicrobial activity, and DNA interactions of new Cu(II)-Schiff base complexes. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1672735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry, College of Science, King Faisal University, Al Hufuf, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Nahla A. Hashem
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
13
|
Catalytic (ep)oxidation and corrosion inhibition potentials of CuII and CoII pyridinylimino phenolate complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Crystal structure of an alkoxide bridged dinuclear copper(II) complex: mild and selective oxidation of primary and secondary alcohols in water. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0252-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Kitanosono T, Masuda K, Xu P, Kobayashi S. Catalytic Organic Reactions in Water toward Sustainable Society. Chem Rev 2017; 118:679-746. [PMID: 29218984 DOI: 10.1021/acs.chemrev.7b00417] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traditional organic synthesis relies heavily on organic solvents for a multitude of tasks, including dissolving the components and facilitating chemical reactions, because many reagents and reactive species are incompatible or immiscible with water. Given that they are used in vast quantities as compared to reactants, solvents have been the focus of environmental concerns. Along with reducing the environmental impact of organic synthesis, the use of water as a reaction medium also benefits chemical processes by simplifying operations, allowing mild reaction conditions, and sometimes delivering unforeseen reactivities and selectivities. After the "watershed" in organic synthesis revealed the importance of water, the development of water-compatible catalysts has flourished, triggering a quantum leap in water-centered organic synthesis. Given that organic compounds are typically practically insoluble in water, simple extractive workup can readily separate a water-soluble homogeneous catalyst as an aqueous solution from a product that is soluble in organic solvents. In contrast, the use of heterogeneous catalysts facilitates catalyst recycling by allowing simple centrifugation and filtration methods to be used. This Review addresses advances over the past decade in catalytic reactions using water as a reaction medium.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichiro Masuda
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Pengyu Xu
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Ünver H, Kani I. Homogeneous oxidation of alcohols in water catalyzed with Cu(II)-triphenyl acetate/bipyridyl complex. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines catalyzed by a zwtterionic Cu(II)/calix[4]arene complex. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Aerobic oxidation of secondary alcohols in water with ABNO/tert-butyl nitrite/KPF6 catalytic system. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Mao F, Qi Z, Fan H, Sui D, Chen R, Huang J. Heterogeneous cobalt catalysts for selective oxygenation of alcohols to aldehydes, esters and nitriles. RSC Adv 2017. [DOI: 10.1039/c6ra27073e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heterogeneous Co catalysts were demonstrated for the selective oxygenation of alcohols to aldehydes, esters and nitriles respectively.
Collapse
Affiliation(s)
- Fei Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Zhengliang Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Haipeng Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Dejun Sui
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Jun Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|
20
|
Su DS, Wen G, Wu S, Peng F, Schlögl R. Carbocatalysis in Liquid-Phase Reactions. Angew Chem Int Ed Engl 2016; 56:936-964. [DOI: 10.1002/anie.201600906] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Dang Sheng Su
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Guodong Wen
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Shuchang Wu
- Max-Planck-Institut für chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim a.d. Ruhr Germany
| | - Feng Peng
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Robert Schlögl
- Max-Planck-Institut für chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim a.d. Ruhr Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 Berlin 14195 Germany
| |
Collapse
|
21
|
Su DS, Wen G, Wu S, Peng F, Schlögl R. Carbokatalyse in Flüssigphasenreaktionen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600906] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dang Sheng Su
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Guodong Wen
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Shuchang Wu
- Max-Planck-Institut für chemische Energiekonversion; Stiftstraße 34-36 45470 Mülheim an der Ruhr Deutschland
| | - Feng Peng
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Robert Schlögl
- Max-Planck-Institut für chemische Energiekonversion; Stiftstraße 34-36 45470 Mülheim an der Ruhr Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 Berlin 14195 Deutschland
| |
Collapse
|
22
|
Wang B, Hu Y, Fang D, Wu L, Xing R. Efficient and Reusable Sn(II)-containing Imidazolium-based Ionic Liquid as a Catalyst for the Oxidation of Benzyl Alcohol. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201600286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingtong Wang
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
- College of Chemistry and Chemical Engineering; Nanjing Tech University; Jiangsu 210009 China
| | - Yulin Hu
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| | - Dong Fang
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| | - Lin Wu
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| | - Rong Xing
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| |
Collapse
|
23
|
Chen S, Chen J, Xu X, He Y, Yi R, Qiu R. Calix[4]arene-assisted KOH-catalyzed synthesis of O,O-dialkyl-Se-aryl phosphoroselenoates. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Moore PW, Jiao Y, Mirzayans PM, Sheng LNQ, Hooker JP, Williams CM. Selectivity Modulation of the Ley–Griffith TPAP Oxidation with
N
‐Oxide Salts. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter W. Moore
- School of Chemistry and Molecular BiosciencesUniversity of Queensland4072BrisbaneAustralia
| | - Yanxiao Jiao
- School of Chemistry and Molecular BiosciencesUniversity of Queensland4072BrisbaneAustralia
- School of Chemistry and Pharmaceutical SciencesGuangxi Normal University541004GuilinChina
| | - Paul M. Mirzayans
- School of Chemistry and Molecular BiosciencesUniversity of Queensland4072BrisbaneAustralia
| | - Lexter Ng Qi Sheng
- School of Chemistry and Molecular BiosciencesUniversity of Queensland4072BrisbaneAustralia
| | - Jordan P. Hooker
- School of Chemistry and Molecular BiosciencesUniversity of Queensland4072BrisbaneAustralia
| | - Craig M. Williams
- School of Chemistry and Molecular BiosciencesUniversity of Queensland4072BrisbaneAustralia
| |
Collapse
|
25
|
Mirsafaei R, Heravi MM, Hosseinnejad T, Ahmadi S. Copper(II) nanoparticles: an efficient and reusable catalyst in green oxidation of benzyl alcohols to benzaldehydes in water. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3509] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Razieh Mirsafaei
- Department of Chemistry, Yazd Branch; Islamic Azad University; Yazd Iran
| | - Majid M. Heravi
- Department of Chemistry; Alzahra University; Vanak Tehran Iran
| | | | | |
Collapse
|
26
|
Li Y, Zhao H, Mao X, Pan X, Wu J. Structures of potassium calix[4]arene crown ether inclusion complexes and application in polymerization of rac-lactide. Dalton Trans 2016; 45:9636-45. [PMID: 27222057 DOI: 10.1039/c6dt01417h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reaction of 1,3-dipropoxy-p-tert-butyl-calix[4]arene (L(1)H2) with KN(SiMe3)2 afforded a one-dimensional (1D) chain complex [K2L(1)]n (1). Upon reaction with 1 equivalent 18-crown-6, complex 1 can convert to complex [K2(18-crown-6)L(1)] (2) which possesses a sandwich structure. Treatment of two calix[4]arene-crown ligands of 1,3-dihydroxy-p-tert-butyl-calix[4]arene-crown-5 (L(2)H2) and 1,2-dihydroxy-p-tert-butyl-calix[4]arene-crown-5 (L(3)H2) with KN(SiMe3)2 gave the dinuclear complex [K2L(2)] (3) and the mononuclear complex [K(THF)L(3)H] (4), respectively. Complexes 1-4 were all characterized by single-crystal X-ray diffraction techniques. The variable temperature (1)H NMR spectrum indicates there is a quick rotation equilibrium of the two phenoxy groups in complex 3. In addition, complexes 1-4 have been tested for the ring-opening polymerization (ROP) of rac-lactide and the results showed that complexes 2 and 3 are highly active for the ROP of rac-lactide. The obtained polymers displayed low dispersity values (Đ) and the molecular weights are close to the calculated ones. Furthermore, complexes 2 and 3 show moderate isoselectivities of Pm = 0.67 and Pm = 0.73, respectively.
Collapse
Affiliation(s)
- Yingguo Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Cuiying Honors College, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | | | | | | | | |
Collapse
|