1
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Chepaikin EG, Menchikova GN, Pomogailo SI, Martynenko VM, Kornev AB, Khramov EV, Smirnova NS, Yakushev IA. Heterogenized homogeneous catalytic systems for the oxidation of carbon monoxide and propane. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Pal S, Nozaki K, Vedernikov AN, Love JA. Reversible Pt II-CH 3 deuteration without methane loss: metal-ligand cooperation vs. ligand-assisted Pt II-protonation. Chem Sci 2021; 12:2960-2969. [PMID: 34164064 PMCID: PMC8179389 DOI: 10.1039/d0sc06518h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Di(2-pyridyl)ketone dimethylplatinum(ii), (dpk)PtII(CH3)2, reacts with CD3OD at 25 °C to undergo complete deuteration of Pt-CH3 fragments in ∼5 h without loss of methane to form (dpk)PtII(CD3)2 in virtually quantitative yield. The deuteration can be reversed by dissolution in CH3OH or CD3OH. Kinetic analysis and isotope effects, together with support from density functional theory calculations indicate a metal-ligand cooperative mechanism wherein DPK enables Pt-CH3 deuteration by allowing non-rate-limiting protonation of PtII by CD3OD. In contrast, other model di(2-pyridyl) ligands enable rate-limiting protonation of PtII, resulting in non-rate-limiting C-H(D) reductive coupling. Owing to its electron-poor nature, following complete deuteration, DPK can be dissociated from the PtII-centre, furnishing [(CD3)2PtII(μ-SMe2)]2 as the perdeutero analogue of [(CH3)2PtII(μ-SMe2)]2, a commonly used PtII-precursor.
Collapse
Affiliation(s)
- Shrinwantu Pal
- Department of Chemistry and Biotechnology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Andrei N Vedernikov
- Department of Chemistry and Biochemistry, The University of Maryland College Park Maryland 20742 USA
| | - Jennifer A Love
- Department of Chemistry, The University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
4
|
Robinson S, Puddephatt RJ. Reactions of organoplatinum complexes with dimethylamine-borane. NEW J CHEM 2021. [DOI: 10.1039/d0nj03168b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of organoplatinum complexes with dimethylamineborane are reported.
Collapse
Affiliation(s)
- Shawn Robinson
- Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
| | | |
Collapse
|
5
|
Silalahi IH, Heyam AP, Goult CA, Aguiar P, Karadakov PB, Bruce DW. Nuclear Magnetic Resonance and Computational Study of trans-(μ2:η2,η2-1,3-Butadiene)bis(trichloroplatinate(II)). Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Imelda H. Silalahi
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
- Department of Chemistry, University of Tanjungpura, Jalan Prof. H. Hadari Nawawi, Pontianak 78124, Indonesia
| | - Alex P. Heyam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | | | - Pedro Aguiar
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Peter B. Karadakov
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Duncan W. Bruce
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
6
|
Janssen M, De Vos DE. Regioselective C–H hydroxylation of n-alkanes using Shilov-type Pt catalysis in perfluorinated micro-emulsions. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02320h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the potential of combining Shilov-type PtII and micellar catalysis to realize the challenging terminal C–H hydroxylation of saturated n-alkanes using water as the reaction medium is demonstrated.
Collapse
Affiliation(s)
- Michiel Janssen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions
- Department of Microbial and Molecular Systems
- KU Leuven
- 3001 Leuven
- Belgium
| | - Dirk E. De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions
- Department of Microbial and Molecular Systems
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
7
|
Chepaikin EG, Menchikova GN, Pomogailo SI. Homogeneous catalytic systems for the oxidative functionalization of alkanes: design, oxidants, and mechanisms. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2581-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Janssen M, De Vos DE. Pt II -Catalyzed Hydroxylation of Terminal Aliphatic C(sp 3 )-H Bonds with Molecular Oxygen. Chemistry 2019; 25:10724-10734. [PMID: 31170321 DOI: 10.1002/chem.201901803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Indexed: 11/07/2022]
Abstract
The practical application of Shilov-type Pt catalysis to the selective hydroxylation of terminal aliphatic C-H bonds remains a formidable challenge, due to difficulties in replacing PtIV with a more economically viable oxidant, particularly O2 . We report the potential of employing FeCl2 as a suitable redox mediator to overcome the kinetic hurdles related to the direct use of O2 in the Pt reoxidation. For the selective conversion of butyric acid to γ-hydroxybutyric acid (GHB), a significantly enhanced catalyst activity and stability (turnover numbers (TON)>30) were achieved under 20 bar O2 in comparison to current state-of-the-art systems (TON<10). In this regard, essential reaction parameters affecting the overall activity were identified, along with specific additives to attain catalyst stability at longer reaction times. Notably, deactivation by reduction to Pt0 was prevented by the addition of monodentate pyridine derivatives, such as 2-fluoropyridine, but also by introducing varying partial pressures of N2 in the gaseous atmosphere. Finally, stability tests revealed the involvement of PtII and FeCl2 in catalyzing the non-selective overoxidation of GHB. Accordingly, in situ esterification with boric acid proved to be a suitable strategy to maintain enhanced selectivities at much higher conversions (TON>60). Altogether, a useful catalytic system for the selective hydroxylation of primary aliphatic C-H bonds with O2 is presented.
Collapse
Affiliation(s)
- Michiel Janssen
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001, Leuven, Belgium
| | - Dirk E De Vos
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001, Leuven, Belgium
| |
Collapse
|
9
|
Pal S, Patrick BO, Love JA. Platinum-mediated B–H methoxylation of bis(pyrazolyl)borate. Faraday Discuss 2019; 220:317-327. [DOI: 10.1039/c9fd00052f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic investigations into the role of Pt(ii) in mediating methoxylation of B–H fragments of bis(pyrazolyl)borate.
Collapse
Affiliation(s)
- Shrinwantu Pal
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Brian O. Patrick
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Jennifer A. Love
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
10
|
Fard MA, Behnia A, Puddephatt RJ. Cycloneophylplatinum Chemistry: A New Route to Platinum(II) Complexes and the Mechanism and Selectivity of Protonolysis of Platinum–Carbon Bonds. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahmood Azizpoor Fard
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Propane CH activation by palladium complexes bearing ligands with Charge-shift bonding characteristics: A DFT study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Activation and selective oxy-functionalization of alkanes with metal complexes: Shilov reaction and some new aspects. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Roudesly F, Oble J, Poli G. Metal-catalyzed C H activation/functionalization: The fundamentals. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.06.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Ma D, Zhang C, Chen ZN, Xu X. Rational design of model Pd(ii)-catalysts for C–H activation involving ligands with charge-shift bonding characteristics. Phys Chem Chem Phys 2017; 19:2417-2424. [DOI: 10.1039/c6cp06215f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium(ii) complex with a bis-2-borabicyclo[1.1.0]but-1(3)-ene ligand having charge-shift bonding characteristics contributes to better performance for C–H bond activation.
Collapse
Affiliation(s)
- Dongxia Ma
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Congjie Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- MOE Laboratory for Computational Physical Science
- Department of Chemistry
- Fudan University
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- MOE Laboratory for Computational Physical Science
- Department of Chemistry
- Fudan University
| |
Collapse
|
15
|
Affiliation(s)
- Jay A. Labinger
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Meyer D, Strassner T. Methylpalladium complexes with pyrimidine-functionalized N-heterocyclic carbene ligands. Beilstein J Org Chem 2016; 12:1557-65. [PMID: 27559406 PMCID: PMC4979653 DOI: 10.3762/bjoc.12.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/29/2016] [Indexed: 11/23/2022] Open
Abstract
A series of methylpalladium(II) complexes with pyrimidine-NHC ligands carrying different aryl- and alkyl substituents R ([((pym)^(NHC-R))PdII(CH3)X] with X = Cl, CF3COO, CH3) has been prepared by transmetalation reactions from the corresponding silver complexes and chloro(methyl)(cyclooctadiene)palladium(II). The dimethyl(1-(2-pyrimidyl)-3-(2,6-diisopropylphenyl)imidazolin-2-ylidene)palladium(II) complex was synthesized via the free carbene route. All complexes were fully characterized by standard methods and in three cases also by a solid state structure.
Collapse
Affiliation(s)
- Dirk Meyer
- Physikalische Organische Chemie, TU Dresden, Bergstraße 66, 01062 Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, TU Dresden, Bergstraße 66, 01062 Dresden, Germany
| |
Collapse
|
17
|
|
18
|
Gryca I, Machura B, Małecki JG, Kusz J, Shul'pina LS, Ikonnikov NS, Shul'pin GB. p-Tolylimido rhenium(v) complexes with phenolate-based ligands: synthesis, X-ray studies and catalytic activity in oxidation with tert-butylhydroperoxide. Dalton Trans 2016; 45:334-51. [DOI: 10.1039/c5dt03598h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reactions of mer-[Re(p-NTol)X3(PPh3)2] with phenolate-based ligands gave 16 new rhenium(v) complexes. Only a few of them exhibited high catalytic activity.
Collapse
Affiliation(s)
- Izabela Gryca
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Jan Grzegorz Małecki
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joachim Kusz
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Nikolay S. Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
- Plekhanov Russian University of Economics
| |
Collapse
|