1
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Liu X, Lv A, Zhang P, Chang J, Dong R, Liu M, Liu J, Huang X, Yuan XA, Liu Z. The anticancer application of half-sandwich iridium(III) ferrocene-thiosemicarbazide Schiff base complexes. Dalton Trans 2024; 53:552-563. [PMID: 38054240 DOI: 10.1039/d3dt02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoqing Huang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
3
|
Research Progress on the Biological Activities of Metal Complexes Bearing Polycyclic Aromatic Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238393. [PMID: 36500482 PMCID: PMC9739244 DOI: 10.3390/molecules27238393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Due to the abundant and promising biological activities of aromatic hydrazones, it is of great significance to study the biological activities of their metal complexes for the research and development of metal-based drugs. In this review, we focus on the metal complexes of polycyclic aromatic hydrazones, which still do not receive much attention, and summarize the studies related to their biological activities. Although the large number of metal complexes in phenylhydrazone prevent them all from being summarized, the significant value of polycyclic aromatic hydrocarbons themselves (such as naphthalene and anthracene) as pharmacophores are also considered. Therefore, the bioactivities of the metal complexes of naphthylhydrazone and anthrahydrazone are focused on, and the recent research progress on the metal complexes of anthrahydrazone by the authors is also included. In terms of biological activities, these complexes mainly show antibacterial and anticancer activities, along with less bioactivities. The present review demonstrates that the structural design and bioactivities of these complexes are fundamental, which also indicates a certain structure-activity relationship (SAR) in some substructural areas. However, a systematic and comprehensive conclusion of the SAR is still not available, which suggests that more attention should be paid to the bioactivities of the metal complexes of polycyclic aromatic hydrazones since their potential in structural design and biological activity remains to be explored. We hope that this review will attract more researchers to devote their interest and energy into this promising area.
Collapse
|
4
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Abstract
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, numerous rhodium complexes have been recently reported as highly potent antiproliferative agents against various human cancer cells, making them potential alternatives to Pt- and Ru-based metallodrugs. In this review, half-sandwich Rh(III) complexes are overviewed. Many representatives show higher in vitro potency than and different mechanisms of action (MoA) from the conventional anticancer metallodrugs (cisplatin in most cases) or clinically studied Ru drug candidates. Furthermore, some of the reviewed Rh(III) arenyl complexes are also anticancer in vivo. Pioneer anticancer organorhodium compounds as well as the recent advances in the field are discussed properly, and adequate attention is paid to their anticancer activity, solution behaviour and various processes connected with their MoA. In summary, this work summarizes the types of compounds and the most important biological results obtained in the field of anticancer half-sandwich Rh complexes.
Collapse
|
6
|
A New Photoactivatable Ruthenium(II) Complex with an Asymmetric Bis-Thiocarbohydrazone: Chemical and Biological Investigations. Molecules 2021; 26:molecules26040939. [PMID: 33578884 PMCID: PMC7916603 DOI: 10.3390/molecules26040939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/26/2022] Open
Abstract
The synthesis, photoactivation and biological activity of a new piano-stool Ru(II) complex is herein reported. The peculiarity of this complex is that its monodentate ligand which undergoes the photodissociation is an asymmetric bis-thiocarbohydrazone ligand that possesses a pyridine moiety binding to Ru(II) and the other moiety contains a quinoline that endows the ligand with the capacity of chelating other metal ions. In this way, upon dissociation, the ligand can be released in the form of a metal complex. In this article, the double ability of this new Ru(II) complex to photorelease the ligand and to chelate copper and nickel is explored and confirmed. The biological activity of this compound is studied in cell line A549 revealing that, after irradiation, proliferation inhibition is reached at very low half maximal inhibitory concentration (IC50) values. Further, biological assays reveal that the dinuclear complex containing Ni is internalized in cells.
Collapse
|
7
|
Shadap L, Tyagi JL, Poluri KM, Novikov S, Lo CWT, Mozharivskyj Y, Kollipara MR. Synthesis and biological evaluation of some new class of benzothiazole–pyrazole ligands containing arene ruthenium, rhodium and iridium complexes. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-020-00439-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Murugan K, Vijayapritha S, Viswanathamurthi P, Saravanan K, Vijayan P, Ojwach SO. Ru(II) complexes containing (2-(pyren-1-ylmethylene)hydrazinyl)benzothiazole: Synthesis, solid-state structure, computational study and catalysis in N-alkylation reactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Oliveira CG, Romero-Canelón I, Silva MM, Coverdale JPC, Maia PIS, Batista AA, Castelli S, Desideri A, Sadler PJ, Deflon VM. Palladium(ii) complexes with thiosemicarbazones derived from pyrene as topoisomerase IB inhibitors. Dalton Trans 2020; 48:16509-16517. [PMID: 31670343 DOI: 10.1039/c9dt02570g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New palladium complexes with thiosemicarbazonate ligands derived from pyrene exhibit potent antiproliferative activity against A2780 and cisplatin-resistant A2780Cis human ovarian cancer cells, which is dependent on substituent groups of the thiosemicarbazone ligands. Cellular accumulation and distribution studies confirmed that palladium enters the cell nucleus. DNA and topoisomerase IB studies show that one complex is a potent TopIB inhibitor, with selectivity for cancer versus normal cells.
Collapse
Affiliation(s)
- Carolina G Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Carlos, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Oliveira CG, Romero-Canelón I, Coverdale JPC, Maia PIS, Clarkson GJ, Deflon VM, Sadler PJ. Novel tetranuclear PdII and PtII anticancer complexes derived from pyrene thiosemicarbazones. Dalton Trans 2020; 49:9595-9604. [DOI: 10.1039/d0dt01133a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclometallated palladium(ii) and platinum(ii) pyrenyl-derived thiosemicarbazone (H2PrR) complexes of the type [M4(μ-S-PrR-κ3-C,N,S)4] (M = PdII, PtII; R = ethyl, cyclohexyl) have been synthesised in good yields and fully characterised.
Collapse
Affiliation(s)
- Carolina G. Oliveira
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
- Institute of Chemistry
| | | | | | - Pedro Ivo S. Maia
- Department of Chemistry
- Federal University of the Triângulo Mineiro
- 38025-440 Uberaba
- Brazil
| | | | - Victor M. Deflon
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | | |
Collapse
|
11
|
Shadap L, Tyagi JL, Poluri KM, Pinder E, Phillips RM, Kaminsky W, Kollipara MR. Synthesis, structural and in-vitro functional studies of half-sandwich platinum group metal complexes having various bonding modes of benzhydrazone derivative ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lord RM, McGowan PC. Organometallic Iridium Arene Compounds: The Effects of C-Donor Ligands on Anticancer Activity. CHEM LETT 2019; 48:916-924. [DOI: 10.1246/cl.190179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Rianne M. Lord
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, U.K
| | | |
Collapse
|
13
|
Nguyen MH, Khuat TTH, Nguyen HH, Dinh TH. NiII
, PdII
Complexes with Pyrene-based Thiosemicarbazones: Syntheses, Molecular Structures, and Excimeric Emissions. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Minh-Hai Nguyen
- Department of Chemistry; Hanoi University of Science, Vietnam National University; 19 Le Thanh Tong Hanoi Vietnam
| | - Thi-Thuy-Ha Khuat
- Department of Chemistry; Hanoi University of Science, Vietnam National University; 19 Le Thanh Tong Hanoi Vietnam
| | - Hung-Huy Nguyen
- Department of Chemistry; Hanoi University of Science, Vietnam National University; 19 Le Thanh Tong Hanoi Vietnam
| | - Thi-Hien Dinh
- Department of Chemistry; Hanoi National University of Education; 136 Xuan Thuy Hanoi Vietnam
| |
Collapse
|
14
|
Alsharekh MM, Althagafi II, Shaaban MR, Farghaly TA. Microwave-assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3594-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Effect of Substituents on the Biological Activities of Piano Stool η5-Cyclopentadienyl Rh(III) and Ir(III) Complexes. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0957-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Raj Kumar R, Ramesh R, Małecki JG. Synthesis and structure of arene ruthenium(II) benzhydrazone complexes: Antiproliferative activity, apoptosis induction and cell cycle analysis. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Haribabu J, Sabapathi G, Tamizh MM, Balachandran C, Bhuvanesh NSP, Venuvanalingam P, Karvembu R. Water-Soluble Mono- and Binuclear Ru(η6-p-cymene) Complexes Containing Indole Thiosemicarbazones: Synthesis, DFT Modeling, Biomolecular Interactions, and In Vitro Anticancer Activity through Apoptosis. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Gopal Sabapathi
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Manoharan Muthu Tamizh
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600 106, India
| | - Chandrasekar Balachandran
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
18
|
|
19
|
Rogolino D, Cavazzoni A, Gatti A, Tegoni M, Pelosi G, Verdolino V, Fumarola C, Cretella D, Petronini PG, Carcelli M. Anti-proliferative effects of copper(II) complexes with hydroxyquinoline-thiosemicarbazone ligands. Eur J Med Chem 2017; 128:140-153. [DOI: 10.1016/j.ejmech.2017.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 01/21/2017] [Indexed: 01/21/2023]
|
20
|
Aradhyula BPR, Kalidasan M, Gangele K, Deb DK, Shepherd SL, Phillips RM, Poluri KM, Kollipara MR. Synthesis, Structural and Biological Studies of Some Half-Sandwich d6-Metal Complexes with Pyrimidine-Based Ligands. ChemistrySelect 2017. [DOI: 10.1002/slct.201601926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mahesh Kalidasan
- Centre for Advanced Studies in Chemistry; North-Eastern Hill University; Shillong- 793 022 India
| | - Krishnakant Gangele
- Department of Biotechnology and Center for Nanotechnology; Indian Institute of Technology Roorkee; Roorkee- 247667, Uttarakhand India
| | - Debojit K. Deb
- Centre for Advanced Studies in Chemistry; North-Eastern Hill University; Shillong- 793 022 India
| | - Samanta L. Shepherd
- Department of Pharmacy; School of Applied Sciences; University of Huddersfield; Huddersfield - HD1 3DH UK
| | - Roger M. Phillips
- Department of Pharmacy; School of Applied Sciences; University of Huddersfield; Huddersfield - HD1 3DH UK
| | - Krishna Mohan Poluri
- Department of Biotechnology and Center for Nanotechnology; Indian Institute of Technology Roorkee; Roorkee- 247667, Uttarakhand India
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry; North-Eastern Hill University; Shillong- 793 022 India
| |
Collapse
|
21
|
Salar U, Khan KM, Syed S, Taha M, Ali F, Ismail NH, Perveen S, Wadood A, Ghufran M. Synthesis, in vitro β-glucuronidase inhibitory activity and in silico studies of novel (E)-4-Aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazoles. Bioorg Chem 2016; 70:199-209. [PMID: 28069264 DOI: 10.1016/j.bioorg.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
Current research is based on the synthesis of novel (E)-4-aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazole derivatives (3-15) by adopting two steps route. First step was the condensation between the pyrene-1-carbaldehyde (1) with the thiosemicarbazide to afford pyrene-1-thiosemicarbazone intermediate (2). While in second step, cyclization between the intermediate (2) and phenacyl bromide derivatives or 2-bromo ethyl acetate was carried out. Synthetic derivatives were structurally characterized by spectroscopic techniques such as EI-MS, 1H NMR and 13C NMR. Stereochemistry of the iminic double bond was confirmed by NOESY analysis. All pure compounds 2-15 were subjected for in vitro β-glucuronidase inhibitory activity. All molecules were exhibited excellent inhibition in the range of IC50=3.10±0.10-40.10±0.90μM and found to be even more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.38±1.05μM). Molecular docking studies were carried out to verify the structure-activity relationship. A good correlation was perceived between the docking study and biological evaluation of active compounds.
Collapse
Affiliation(s)
- Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Shazia Syed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Farman Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Mehreen Ghufran
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
22
|
Su W, Peng B, Li P, Xiao Q, Huang S, Gu Y, Lai Z. Synthesis, structure and antiproliferative activity of organometallic iridium(III) complexes containing thiosemicarbazone ligands. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf; (Guangxi Teachers Education University), Ministry of Education; China
| | - Binghua Peng
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf; (Guangxi Teachers Education University), Ministry of Education; China
| | - Peiyuan Li
- College of Pharmacy; Guangxi University of Chinese Medicine; Nanning China
| | - Qi Xiao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf; (Guangxi Teachers Education University), Ministry of Education; China
| | - Shan Huang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf; (Guangxi Teachers Education University), Ministry of Education; China
| | - Yunqiong Gu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf; (Guangxi Teachers Education University), Ministry of Education; China
| | - Zefeng Lai
- Department of Pharmacology; Guangxi Medicinal University; Nanning 530021 China
| |
Collapse
|
23
|
Nakajima T, Kawasaki Y, Kure B, Tanase T. Homo‐ and Heterodinuclear Rh and Ir Complexes Supported by SN
n
Mixed‐Donor Ligands (
n
= 2–4): Stereochemistry and Coordination‐Site‐Exchange Reactions of Cp*M (M = Rh, Ir) Units. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takayuki Nakajima
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Yuki Kawasaki
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Bunsho Kure
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Tomoaki Tanase
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| |
Collapse
|
24
|
Arafa WA, Badry MG. Facile synthesis of bis-thiosemicarbazone derivatives as key precursors for the preparation of functionalised bis-thiazoles. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14639296902648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new class of bis-thiosemicarbazones was designed and synthesised by the condensation of 2,6-diformylphenol derivatives and thiosemicarbazide using either ultrasound or conventional methods. Both thiosemicarbazone groups of these derivatives underwent a heterocyclisation process to give a series of novel bis-thiazole derivatives as major products. The structures of all the synthesised compounds were characterised by multinuclear NMR (1H and 13C), IR, HRMS and elemental analyses.
Collapse
Affiliation(s)
- Wael A.A. Arafa
- Chemistry Department, College of Science, Aljouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt
| | - Mohamed G. Badry
- Chemistry Department, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt
| |
Collapse
|
25
|
Cortezon-Tamarit F, Sarpaki S, Calatayud DG, Mirabello V, Pascu SI. Applications of "Hot" and "Cold" Bis(thiosemicarbazonato) Metal Complexes in Multimodal Imaging. CHEM REC 2016; 16:1380-97. [PMID: 27149900 DOI: 10.1002/tcr.201500292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The applications of coordination chemistry to molecular imaging has become a matter of intense research over the past 10 years. In particular, the applications of bis(thiosemicarbazonato) metal complexes in molecular imaging have mainly been focused on compounds with aliphatic backbones due to the in vivo imaging success of hypoxic tumors with PET (positron emission tomography) using (64) CuATSM [copper (diacetyl-bis(N4-methylthiosemicarbazone))]. This compound entered clinical trials in the US and the UK during the first decade of the 21(st) century for imaging hypoxia in head and neck tumors. The replacement of the ligand backbone to aromatic groups, coupled with the exocyclic N's functionalization during the synthesis of bis(thiosemicarbazones) opens the possibility to use the corresponding metal complexes as multimodal imaging agents of use, both in vitro for optical detection, and in vivo when radiolabeled with several different metallic species. The greater kinetic stability of acenaphthenequinone bis(thiosemicarbazonato) metal complexes, with respect to that of the corresponding aliphatic ATSM complexes, allows the stabilization of a number of imaging probes, with special interest in "cold" and "hot" Cu(II) and Ga(III) derivatives for PET applications and (111) In(III) derivatives for SPECT (single-photon emission computed tomography) applications, whilst Zn(II) derivatives display optical imaging properties in cells, with enhanced fluorescence emission and lifetime with respect to the free ligands. Preliminary studies have shown that gallium-based acenaphthenequinone bis(thiosemicarbazonato) complexes are also hypoxia selective in vitro, thus increasing the interest in them as new generation imaging agents for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | - Sophia Sarpaki
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David G Calatayud
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
26
|
Sangilipandi S, Sutradhar D, Bhattacharjee K, Kaminsky W, Joshi S, Chandra AK, Mohan Rao K. Synthesis, structure, antibacterial studies and DFT calculations of arene ruthenium, Cp∗Rh, Cp∗Ir and tricarbonylrhenium metal complexes containing 2-chloro-3-(3-(2-pyridyl)pyrazolyl)quinoxaline ligand. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|