1
|
González-Belman OF, Jiménez-Halla JOC, González G, Báez JE. Comparison of three elements (In, Sn, and Sb) in the same period as catalysts in the ring-opening polymerization of l-lactide: from amorphous to semicrystalline polyesters. RSC Adv 2024; 14:34733-34745. [PMID: 39483385 PMCID: PMC11526846 DOI: 10.1039/d4ra06783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ring-opening polymerization (ROP) of l-lactide (l-LA) is the main method for synthesizing poly(l-lactide) (PLLA), in which choosing the catalyst is one of the most important parameters. In this work, we focused on the systematic study of catalysts based on p-block elements from period 5, such as indium(iii), tin(ii), tin(iv) and antimony(iii) acetates, which displayed contrasting performances influenced by the oxidation state of the metal center. Analysis of the obtained oligomers by different techniques, including nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), polarized optical microscopy (POM) and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), revealed the selectivity of each catalyst toward the ROP of l-LA. Tin(ii) acetate showed the best performance, making it the best catalyst of this series for synthesizing PLLA. Indium(iii) and tin(ii) acetates induced an amorphous and semicrystalline polyester, respectively. The kinetic study evidenced the excellent performance of tin(ii) acetate in the ROP of l-LA. This catalyst reached high conversions in a quarter of the total reaction time, positioning it as the most catalytically active of the selected p-block acetate catalysts. Finally, the coordination-insertion mechanism by the catalyst in the initiation step was corroborated through the development of a mechanistic study applying the density functional theory (DFT).
Collapse
Affiliation(s)
- Oscar F González-Belman
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - J Oscar C Jiménez-Halla
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - Gerardo González
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - José E Báez
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| |
Collapse
|
2
|
Zangade SB, Dhulshette BS, Patil PB. Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1046-1060. [PMID: 37867263 DOI: 10.2174/0113895575273658231012040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4',5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3',4',5,5',7-Hexahydroxyflavylium (delphinidin), 3,3',4',5,7-Pentahydroxy-5'-methoxyflavylium (petunidin), and 3,4',5,7-Tetrahydroxy-3',5'-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities. OBJECTIVE Flavonoid-metal ion complexes display a broad spectrum of biological properties such as antioxidant, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, and cytotoxic activity. The literature survey showed that flavonoid metal complexes have potential therapeutic properties against various cancerous cells. The objective is to gain insight into the current perspective and development of novel anticancer metallodrugs. METHODS The flavonoid-metal ion complexes can be prepared by reacting flavonoid ligand with appropriate metal salt in aqueous or alcoholic reaction medium under stirring or refluxing conditions. In this review article, the various reported methods for the synthesis of flavonoid-metal complexes have been included. The utility of synthetic methods for flavonoid-metal complexes will support the discovery of novel therapeutic drugs. RESULTS In this review study, short libraries of flavonoid-metal ion complexes were studied as potential anticancer agents against various human cancer cell lines. The review report reveals that metal ions such as Fe, Co, Ni, Cu, Zn, Rh, Ru, Ga, Ba, Sn etc., when binding to flavonoid ligands, enhance the anticancer activity compared to free ligands. This review study covered some important literature surveys for the last two decades. CONCLUSION It has been concluded that flavonoid metal complexes have been associated with a wide range of biological properties that could be noteworthy in the medicinal field. Therefore, to develop a new anticancer drug, it is essential to determine the primordial interaction of drug with DNA under physiological or anatomical conditions. The study of numerous flavonoid metal complexes mentioned in this paper could be the future treatment against various cancerous diseases.
Collapse
Affiliation(s)
- Sainath B Zangade
- Department of Chemistry, Madhavrao Patil, ACS College, Palam Dist. Parbhani, 431720, (M.S.), India
| | - Bashweshawar S Dhulshette
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pravinkumar B Patil
- Department of Chemistry, Mudhoji College, Phaltan, Dist. Satara, 415523, (M.S.), India
| |
Collapse
|
3
|
Pang J, Ke Z, Jiang T, Tang F, Zhang S, He K. Synthesis and catalytic performance of wood cellulose nanofibers grafted with polylactic acid in rare-earth complexes based on tetrazole carboxylic acids. Int J Biol Macromol 2023; 253:127218. [PMID: 37793529 DOI: 10.1016/j.ijbiomac.2023.127218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Stannous octanoate [Sn(Oct)2] and 4-dimethylamino pyridine (DMAP) were used to catalyze the synthesis of amphiphilic cellulose-based graft copolymers, but the acute toxicity of tin ions and DMAP prompts the need for the application of less harmful catalysts. Herein, green catalyst complexes 1-3 [M(H0.5L)2(H2O)5]·2(H2O) (M = Sm, 1; M = Nd, 2; M = Eu, 3; H2L = 4-(3-(tetrazol-5-yl)pyridin-5-yl)benzoic acid) were synthesized, and their properties were systematically investigated. Single-crystal X-ray diffraction showed that the complexes possessed a zero-dimensional structure, while the thermogravimetry and scanning electron microscopy results confirmed their stability after heating at 110 °C for 10 h. Using complexes 1-3 and DMAP as the catalysts, CNFs were grafted with l-lactide via homogeneous ring-opening polymerization to form wood cellulose nanofibers grafted with l-lactide (WGLAs), and the effects of the ratio of wood cellulose nanofibers (WCNFs) to l-lactide ([AGU]/[LA]) and catalyst dosage were studied. The polymerization followed the coordination-insertion mechanism. Under comparable reaction conditions, the grafting ratio of WGLA-1 reached 84.7 %, and the grafting ratio of complex 1 was found to be higher than those achieved using DMAP. WGLAs demonstrated good thermal stability without cytotoxicity, and the residual catalysts in the WGLAs exhibited fluorescence characteristics. Overall, amphiphilic cellulose-based materials with fluorescence emission offered a promising modification strategy to prepare high-performance polymer composites for agriculture and biomedical application.
Collapse
Affiliation(s)
- Jinying Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhilin Ke
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Tanlin Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Fushun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shuhua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Kunhuan He
- College of petroleum and chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
4
|
Wei BY, Cao CZ, Cao CT. Influences of polarizability effect of alkyl group and homoring competition effect of substituents on the NMR spectra of salen-type Schiff base. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:701-712. [PMID: 33403765 DOI: 10.1002/mrc.5131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Salen-type Schiff bases are a kind of important compounds and are widely used. In order to explore the effect of alkyl groups and substituents attached to aromatic ring on the chemical shifts, 63 title compounds were synthesized. Their 1 H NMR and 13 C NMR spectra were obtained; and the effects of the alkyl chain length and substituents on the chemical shifts (δH (CHN), δC (CHN), δH (OH), and δC (COH)) were studied. The results show that (1) the alkyl polarizability effect index (PEI) has an important influence on the chemical shifts of the above four atoms, with the increase of PEI, the values of δH (CHN) and δc(CHN) decrease, and the values of δH (OH) and δC (COH) increase. (2) The influence of substituent X attached to aromatic ring on the chemical shift is related to its position by taking OH or CHN as reference. As for the effect of substituent on the chemical shifts, the effect of Hammett constant σ(X)OH and excited-state substituent parameter σ CC ex X OH with OH as reference are different from that ofσ(X)CHN and σ CC ex X CH N with CHN as reference, and there is a "homoring competition effect" of the substituent. (3) The effect of the cross-interaction between X and OH on the chemical shift is also significantly different due to the different position of X. Quantitative correlation equations against chemical shifts were built for the four atoms, and the stability and prediction ability of the obtained equations were confirmed by leave-one-out cross validation.
Collapse
Affiliation(s)
- Bai-Ying Wei
- School of Resource Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, China
| | - Chen-Zhong Cao
- School of Resource Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, China
| | - Chao-Tun Cao
- School of Resource Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
5
|
Turner ZR, Lamb JV, Robinson TP, Mandal D, Buffet JC, O Hare D. Ring-opening polymerisation of l- and rac-lactide using group 4 permethylpentalene aryloxides and alkoxides. Dalton Trans 2021; 50:4805-4818. [PMID: 33877178 DOI: 10.1039/d1dt00252j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of group 4 permethylpentalene (C8Me62-; Pn*) aryloxide and alkoxide complexes have been synthesised and fully characterised by multinuclear NMR spectroscopy and single-crystal X-ray diffraction; (η8-C8Me6)Zr(OR)2 (R = tBu (1), 2,6-Me-C6H3 (2), 2,6-iPr-C6H3 (3) and 4-OMe-C6H4 (4)), (η8-C8Me6)Zr (OR) (R = 2,6-tBu-C6H3 (5) and 2,6-tBu-4-Me-C6H2 (6)), (η8-C8Me6)ZrCp(OR) (R = tBu (7), 2,6-Me-C6H3 (8) and 2,6-iPr-C6H3 (9)), (η8-C8Me6)TiCp(O-2,6-Me-C6H3) (10) and (η8-C8Me6)ZrCpMe(OR) (R = 2,6-Me-C6H3 (11), 2,6-iPr-C6H3 (12) and 2,4-tBu-C6H3 (13)). 2, 3, 6, 7, 9, 10 and 12 were studied as initiators for the ring-opening polymerisation (ROP) of l-lactide, and 2, 3, 6, 7 and 10 were studied as initiators for the ROP of rac-lactide. 3 was found to be the most active initiator for the ROP of l-lactide (kobs = 0.35 h-1) and 2 for the ROP of rac-lactide (kobs = 0.21 h-1). These initiators produced isotactic PLA for the ROP of l-lactide and moderately heterotactic enriched (maximum Pr of 0.69) or atactic PLA for the ROP of rac-lactide with polymer chains consisting of polylactic acid repeat units with -OR and -OH end groups.
Collapse
Affiliation(s)
- Zoë R Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, OX1 3TA, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Wang JF, Li YJ, Guo SZ, Zhao L. A new symmetrical nickel(II) complex with isothiocyanate coordination: synthesis, crystal structure, Hirshfeld surface analysis, DFT calculation and antibacterial activities. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1852428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ji-Fa Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ya-Juan Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Shuang-Zhu Guo
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Li Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Abdel Aziz AA, Sayed MA. Some novel rare earth metal ions complexes: Synthesis, characterization, luminescence and biocidal efficiency. Anal Biochem 2020; 598:113645. [DOI: 10.1016/j.ab.2020.113645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
|
8
|
Immortal Ring Opening Polymerization of ε-caprolactone and rac-lactide by magnesium precatalysts bearing sterically congested phenoxide ligands. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Lyubov DM, Tolpygin AO, Trifonov AA. Rare-earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Mandal M, Ramkumar V, Chakraborty D. Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization studies. Polym Chem 2019. [DOI: 10.1039/c8py01750f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Salen complexes of zirconium and hafnium were synthesized and used as effective catalysts for the polymerization of lactide and ε-CL and homopolymerization, copolymerization and coupling of epoxides with CO2.
Collapse
Affiliation(s)
- Mrinmay Mandal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | | | - Debashis Chakraborty
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| |
Collapse
|
11
|
Liu YT, Sheng J, Yin DW, Xin H, Yang XM, Qiao QY, Yang ZJ. Ferrocenyl chalcone-based Schiff bases and their metal complexes: Highly efficient, solvent-free synthesis, characterization, biological research. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Skvortsov GG, Tolpygin AO, Fukin GK, Long J, Larionova J, Cherkasov AV, Trifonov AA. Rare‐Earth Complexes Coordinated by
ansa
‐Bis(amidinate) Ligands with
m
‐Phenylene, 2,6‐Pyridinediyl, and SiMe
2
Linkers. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Grigorii G. Skvortsov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603950 Nizhny Novgorod, GSP‐445 Russia
| | - Aleksei O. Tolpygin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603950 Nizhny Novgorod, GSP‐445 Russia
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603950 Nizhny Novgorod, GSP‐445 Russia
| | - Jérôme Long
- Institut Charles Gerhardt Montpellier ICGM UMR-5253 CNRS-UM-ENSCM Ingénierie Moléculaire et Nano-Objets Université de Montpellier site Triolet, Place E. Bataillon 34095 Montpellier Cedex 5 France
| | - Joulia Larionova
- Institut Charles Gerhardt Montpellier ICGM UMR-5253 CNRS-UM-ENSCM Ingénierie Moléculaire et Nano-Objets Université de Montpellier site Triolet, Place E. Bataillon 34095 Montpellier Cedex 5 France
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603950 Nizhny Novgorod, GSP‐445 Russia
| | - Alexander A. Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603950 Nizhny Novgorod, GSP‐445 Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Moscow, GSP‐1 Russia
| |
Collapse
|
13
|
Xia Q, Cui Y, Yuan D, Wang Y, Yao Y. Synthesis and characterization of lanthanide complexes stabilized by N -aryl substituted β -ketoiminato ligands and their application in the polymerization of rac -lactide. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Synthesis of Li(I), Zn(II) and Mg(II) complexes of amine bis(phenolates) and their exploitation for the ring opening polymerisation of rac-lactide. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Parwe SP, Warkad SD, Mane MV, Shedage PS, Garnaik B. Investigation of the biocompatibility and cytotoxicity associated with ROP initiator and its role in bulk polymerization of l-lactide. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|