1
|
Targets, Mechanisms and Cytotoxicity of Half-Sandwich Ir(III) Complexes Are Modulated by Structural Modifications on the Benzazole Ancillary Ligand. Cancers (Basel) 2022; 15:cancers15010107. [PMID: 36612104 PMCID: PMC9818021 DOI: 10.3390/cancers15010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancers are driven by multiple genetic mutations but evolve to evade treatments targeting specific mutations. Nonetheless, cancers cannot evade a treatment that targets mitochondria, which are essential for tumor progression. Iridium complexes have shown anticancer properties, but they lack specificity for their intracellular targets, leading to undesirable side effects. Herein we present a systematic study on structure-activity relationships of eight arylbenzazole-based Iridium(III) complexes of type [IrCl(Cp*)], that have revealed the role of each atom of the ancillary ligand in the physical chemistry properties, cytotoxicity and mechanism of biological action. Neutral complexes, especially those bearing phenylbenzimidazole (HL1 and HL2), restrict the binding to DNA and albumin. One of them, complex 1[C,NH-Cl], is the most selective one, does not bind DNA, targets exclusively the mitochondria, disturbs the mitochondria membrane permeability inducing proton leak and increases ROS levels, triggering the molecular machinery of regulated cell death. In mice with orthotopic lung tumors, the administration of complex 1[C,NH-Cl] reduced the tumor burden. Cancers are more vulnerable than normal tissues to a treatment that harnesses mitochondrial dysfunction. Thus, complex 1[C,NH-Cl] characterization opens the way to the development of new compounds to exploit this vulnerability.
Collapse
|
2
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
3
|
Komarnicka UK, Kozieł S, Pucelik B, Barzowska A, Siczek M, Malik M, Wojtala D, Niorettini A, Kyzioł A, Sebastian V, Kopel P, Caramori S, Bieńko A. Liposomal Binuclear Ir(III)–Cu(II) Coordination Compounds with Phosphino-Fluoroquinolone Conjugates for Human Prostate Carcinoma Treatment. Inorg Chem 2022; 61:19261-19273. [DOI: 10.1021/acs.inorgchem.2c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Victor Sebastian
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Campus Río Ebro-Edificio I+D, Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28-029 Madrid, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
4
|
Mansour AM, Radacki K, Shehab OR. Sulfonate improves water solubility and cell selective toxicity and alters the lysozyme binding activity of half sandwich Rh(iii) complexes. Dalton Trans 2021; 50:10701-10706. [PMID: 34337627 DOI: 10.1039/d1dt00979f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of the propyl-sulfonic acid group at N1 of the coordinated 2-(2-pyridyl)benzimidazole ligand (L) in [RhCl(η5-C5Me5)L](CF3SO3) gives rise to a water-soluble complex, which can bind to the model protein lysozyme via non-covalent interactions. The complex shows selective moderate toxicity against Cryptococcus neoformans (MIC = 21.6-43.3 μM) and exhibits no cytotoxicity to healthy HEK293 cells.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
5
|
Lu Y, Zhu D, Gui L, Li Y, Wang W, Liu J, Wang Y. A dual-targeting ruthenium nanodrug that inhibits primary tumor growth and lung metastasis via the PARP/ATM pathway. J Nanobiotechnology 2021; 19:115. [PMID: 33892746 PMCID: PMC8063440 DOI: 10.1186/s12951-021-00799-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Many studies have found that ruthenium complexes possess unique biochemical characteristics and inhibit tumor growth or metastasis. Results Here, we report the novel dual-targeting ruthenium candidate 2b, which has both antitumor and antimetastatic properties and targets tumor sites through the enhanced permeability and retention (EPR) effect and transferrin/transferrin receptor (TF/TFR) interaction. The candidate 2b is composed of ruthenium-complexed carboline acid and four chloride ions. In vitro, 2b triggered DNA cleavage and thus blocked cell cycle progression and induced apoptosis via the PARP/ATM pathway. In vivo,2b inhibited not only Lewis lung cancer (LLC) tumor growth but also lung metastasis. We detected apoptosis and decreased CD31 expression in tumor tissues, and ruthenium accumulated in the primary tumor tissue of C57BL/6 mice implanted with LLC cells. Conclusions Thus, we conclude that 2b targets tumors, inhibits tumor growth and prevents lung metastasis.![]()
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China
| | - Lin Gui
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China
| | - Yuanming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jiawang Liu
- Medicinal Chemistry Core, The University of Tennessee Health Science Center, 579 College of Pharmacy Building, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China. .,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China.
| |
Collapse
|
6
|
Abstract
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, numerous rhodium complexes have been recently reported as highly potent antiproliferative agents against various human cancer cells, making them potential alternatives to Pt- and Ru-based metallodrugs. In this review, half-sandwich Rh(III) complexes are overviewed. Many representatives show higher in vitro potency than and different mechanisms of action (MoA) from the conventional anticancer metallodrugs (cisplatin in most cases) or clinically studied Ru drug candidates. Furthermore, some of the reviewed Rh(III) arenyl complexes are also anticancer in vivo. Pioneer anticancer organorhodium compounds as well as the recent advances in the field are discussed properly, and adequate attention is paid to their anticancer activity, solution behaviour and various processes connected with their MoA. In summary, this work summarizes the types of compounds and the most important biological results obtained in the field of anticancer half-sandwich Rh complexes.
Collapse
|
7
|
Zhang B, Xiao J, Wang X, Li P, Su W. Synthesis, characterization and photodynamic activity of half-sandwich rhodium(III) complexes with curcuminoids. Photodiagnosis Photodyn Ther 2020; 32:102049. [PMID: 33059109 DOI: 10.1016/j.pdpdt.2020.102049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Half-sandwich Cp*-Rh complexes containing curcuminoids ([Rh(η5-Cp*)(L)(Py)]PF6, 1-3, L = curcuminoid ligands L1-L3) were prepared, characterized and studied for anticancer activity. Complex 1 was structurally characterized by single-crystal X-ray crystallography. Complex 3 presented excellent photodynamic anticancer effect in light (>400 nm) showing IC50 values of 7.5 and 4.3 μM against HepG2, SKOV3 and HeLa, respectively, along with the 12.4, 7.9 and 4.7-fold lower toxicity in the dark. Confocal fluorescence images show that the complex primarily targeted mitochondrial localization. These results suggest that the complex 3 was a valuable agent with higher efficacy for chemotherapy and photodynamic therapy, which can achieve real-time image guidance in cancer therapy for the fluorescence of the complex as imaging signals. This investigation provides a valuable route to design novel half-sandwich Cp*-Rh complexes with higher efficacy for photodynamic anticancer chemotherapy.
Collapse
Affiliation(s)
- Baoqu Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Jun'an Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Xiaohui Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, PR China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
8
|
Huang S, Luo H, Su W, Xiao Q, Xie J. Comparative study of binding interactions between three organometallic rhodium(III) complexes with curcuminoid ligands and human serum albumin. J Mol Recognit 2020; 34:e2876. [PMID: 32974948 DOI: 10.1002/jmr.2876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/06/2022]
Abstract
Organometallic rhodium(III) complexes with curcuminoid ligands attracted considerable attention in biological-related fields and the variation of curcuminoid ligands may regulate the biological activity of these organometallic rhodium(III) complexes. To deeply evaluate the biological influences of these complexes, the binding interactions between three rhodium(III) complexes with curcuminoid ligands and human serum albumin (HSA) were comparably investigated by spectroscopic and electrochemical techniques. The results suggested that the intrinsic fluorescence of HSA was quenched by three complexes through static fluorescence quenching mode. Three complexes bonded with Sudlow's site I of HSA to form ground-state compounds under the binding forces of van der Waals interactions, hydrogen bonds formation, and protonation. Finally, the native conformational structure and the thermal stability of HSA were all changed. Space steric hindrance of complexes took part in the differences of the fluorescence quenching processes, and the chemical polarity of the complexes played a vital role in the variations of the structure and biological activity of HSA. These results illustrated the molecular interactions between protein and organometallic rhodium(III) complexes with curcuminoid ligands, offering new insight about the prospective applications of analogical rhodium(III) complexes in biomedicine areas.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Jiangning Xie
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| |
Collapse
|
9
|
Chen ZL, Zou BQ, Qin QP, Wang ZF, Tan MX, Huang XL, Liang CJ, Liang H. Cyclometallated iridium(III)-5-bromo-8-quinolinol complexes as mitochondria-targeted anticancer agents. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Petrović A, Živanović M, Puchta R, Ćoćić D, Scheurer A, Milivojevic N, Bogojeski J. Experimental and quantum chemical study оn the DNA/protein binding and the biological activity of a rhodium(iii) complex with 1,2,4-triazole as an inert ligand. Dalton Trans 2020; 49:9070-9085. [DOI: 10.1039/d0dt01343a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A rhodium(iii) complex with 1,2,4-triazole and a pincer type nitrogen-donor ligand was synthesized, and its interaction with biomolecules was examined.
Collapse
Affiliation(s)
| | - Marko Živanović
- University of Kragujevac
- Institute of Information Technologies Kragujevac
- 34000 Kragujevac
- Serbia
| | - Ralph Puchta
- Inorganic Chemistry
- Department of Chemistry and Pharmacy
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Dušan Ćoćić
- University of Kragujevac
- Faculty of Science
- 34000 Kragujevac
- Serbia
| | - Andreas Scheurer
- Inorganic Chemistry
- Department of Chemistry and Pharmacy
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Nevena Milivojevic
- University of Kragujevac
- Institute of Information Technologies Kragujevac
- 34000 Kragujevac
- Serbia
| | - Jovana Bogojeski
- University of Kragujevac
- Faculty of Science
- 34000 Kragujevac
- Serbia
| |
Collapse
|
11
|
Mansour AM, Radacki K. Antimicrobial properties of half-sandwich Ir(iii) cyclopentadienyl complexes with pyridylbenzimidazole ligands. Dalton Trans 2020; 49:4491-4501. [DOI: 10.1039/d0dt00451k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ethyl group determined the toxicity of pyridylbenzimidazole Ir(iii) compounds and exchange of the group with sulfonate led to diminishing of the antibacterial activity. Increasing the metal content per complex, 3, gave rise to a compound with no toxicity.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
12
|
Kozieł S, Komarnicka UK, Ziółkowska A, Skórska-Stania A, Pucelik B, Płotek M, Sebastian V, Bieńko A, Stochel G, Kyzioł A. Anticancer potency of novel organometallic Ir(iii) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00538j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D model of cell culturing (spheroids) was explored and the anticancer potential of the selected novel organometallic Ir(iii) complex encapsulated in Pluronic p-123 micelles was clearly proved.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | | | | | - Barbara Pucelik
- Małopolska Centre of Biotechnology
- Jagiellonian University
- Kraków
- Poland
| | - Michał Płotek
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
- Faculty of Conservation and Restoration of Works of Art
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- The Aragón Materials Science Institute (ICMA)
- University of Zaragoza
- 50018 Zaragoza
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Grażyna Stochel
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| |
Collapse
|
13
|
Lord RM, McGowan PC. Organometallic Iridium Arene Compounds: The Effects of C-Donor Ligands on Anticancer Activity. CHEM LETT 2019. [DOI: 10.1246/cl.190179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rianne M. Lord
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, U.K
| | | |
Collapse
|
14
|
Effect of Substituents on the Biological Activities of Piano Stool η5-Cyclopentadienyl Rh(III) and Ir(III) Complexes. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0957-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Li Y, Gu Z, Zhang C, Li S, Zhang L, Zhou G, Wang S, Zhang J. Synthesis, characterization and ROS-mediated antitumor effects of palladium(II) complexes of curcuminoids. Eur J Med Chem 2017; 144:662-671. [PMID: 29289889 DOI: 10.1016/j.ejmech.2017.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Based on the synthesis of curcumin and its derivatives from aromatic aldehydes, a novel series of palladium(II) complexes with curcumin (or its derivatives) and 2,2'-bipyridine have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of the curcuminoid ligands in H2O/acetone solution. These complexes have been characterized by 1H (13C) NMR, HRMS and elemental analysis. Crystal structure of 3h has been determined by X-ray diffraction analysis. Their cytotoxicity was tested by MTT. The preliminary results showed that complexes 3d, 3f, 3h have significant inhibition on proliferation of three carcinoma cells such as MCF-7, HeLa and A549 cells, which were more active than cisplatin. Further mechanistic studies indicated that the tested complex 3h arrested the cell cycle in the S phase and can disrupted mitochondrial membrane potential and induced tumor cell apoptosis through reactive oxygen species (ROS)-dependent pathway.
Collapse
Affiliation(s)
- Yanci Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenyu Gu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Can Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Shenghui Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Liang Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
16
|
Synthesis, physicochemical properties, thermal analysis and biological application of phosphorescent cationic iridium(III) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|