1
|
N'Da DD, Aucamp J, van Rensburg HDJ, Suganuma K. Design, synthesis, in vitro and in vivo trypanosomaticidal efficacy of novel 5-nitroindolylazines. Eur J Med Chem 2024; 280:116979. [PMID: 39471710 DOI: 10.1016/j.ejmech.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens. Hence, there is accrued necessity for the development of new, effective, and affordable drugs. In recent decades, several molecular scaffolds, including nitroaromatics, endoperoxides, etc., have been attempted as building blocks to generate new effective clinical antitrypanosomatid agents with low toxicity so far to no avail. In this regard, a series of nitroindolylazine derivatives was synthesised in a three-step process involving nucleophilic substitution (SN), hydrazination and Schiff base condensation reactions, and was evaluated against various Leishmania and Trypanosoma species and strains. Several promising hits portraying leishmanicidal and trypanocidal with in vitro submicromolar activities, and devoid of toxicity on mammalian cells were uncovered. Among these, nitrofurylazine 11 (Tc IC50: 0.08 ± 0.03 μM) and nitrothienylazine 13 (Tc IC50: 0.09 ± 0.01 μM) were evaluated in vivo against Trypanosoma congolense, the causative agent of nagana, which is livestock most virulent trypanosome species in mice-infected preliminary study. However, only partial efficacy was observed as all mice succumbed due to high parasitemia within 13 days post-infection during the treatment. The translational potential of antileishmanial and antichagasic hits, as well as further identification of their molecular targets, will be assessed in future research.
Collapse
Affiliation(s)
- David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | | | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
2
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
3
|
Janse van Rensburg H, N’Da DD, Suganuma K. In Vitro and In Vivo Trypanocidal Efficacy of Nitrofuryl- and Nitrothienylazines. ACS OMEGA 2023; 8:43088-43098. [PMID: 38024678 PMCID: PMC10652724 DOI: 10.1021/acsomega.3c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
African trypanosomiasis is a vector-borne disease of animals and humans in the tsetse fly belt of Africa. Trypanosoma congolense ("nagana") is the most pathogenic trypanosome in livestock and causes high morbidity and mortality rates among cattle. In the absence of effective preventative vaccines, the management of trypanosomiasis relies on chemoprophylaxis and/or -therapy. However, the trypanocides in clinical use exhibit poor oral bioavailability and toxicity, and therapeutic failures occur because of resistant strains. Because nitrofurantoin displayed, in addition to its clinical use, promising antiparasitic activity, the current study was conducted to evaluate the in vitro trypanocidal activity and preliminary in vivo treatment efficacy of previously synthesized nitrofuranylazines. The trypanocidal activity of these nitrofuran derivatives varied among the evaluated trypanosome species; however, T. congolense strain IL3000 was more susceptible than other animal and human trypanosomes. The nitrofurylazines 4a (IC50 0.04 μM; SI > 7761) and 7a (IC50 0.03 μM; SI > 9542) as well as the nitrothienylazine 8b (IC50 0.04 μM; SI 232), with nanomolar IC50 values, were revealed as early antitrypanosomal leads. Although these derivatives showed strong trypanocidal activity in vitro, no in vivo treatment efficacy was observed in T. congolense IL3000 infected mice after both oral and intraperitoneal administration in a preliminary study. This was attributed to the poor solubility of the test compounds in the in vivo testing media. Indeed, a challenge in drug discovery is finding a balance between the physicochemical properties of a drug candidate, particularly lipophilicity and water solubility, and maintaining adequate potency to provide an effective dose. Hence, future chemical modifications may be required to generate lead-like to lead-like nitrofuranylazines that possess optimal physicochemical and pharmacokinetic properties while retaining in vitro and, ultimately, in vivo trypanocidal efficacy.
Collapse
Affiliation(s)
| | - David D. N’Da
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Keisuke Suganuma
- National
Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
4
|
Saayman M, Kannigadu C, Aucamp J, Janse van Rensburg HD, Joseph C, Swarts AJ, N'Da DD. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med Chem 2023; 14:2012-2029. [PMID: 37859713 PMCID: PMC10583827 DOI: 10.1039/d3md00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Chagas disease and leishmaniasis are vector-borne infectious diseases affecting both humans and animals. These neglected tropical diseases can be fatal if not treated. Hundreds to thousands of new Chagas disease and leishmaniasis cases are being reported by the WHO every year, and currently available treatments are insufficient. Severe adverse effects, impractical administrations and increased pathogen resistance against current clinical treatments underscore a serious need for the development of new drugs to curb these ailments. In search for such drugs, we investigated a series of nitrofuran-based azine derivatives. Herein, we report the design, synthesis, electrochemistry, and biological activity of these derivatives against promastigotes and amastigotes of Leishmania major, and L. donovani strains, as well as epimastigotes and trypomastigotes of Trypanosoma cruzi. Two leishmanicidal early leads and one trypanosomacidal hit with submicromolar activity were uncovered and stand for further in vivo investigation in the search for new antitrypanosomatid drugs. Future objective will focus on the identification of involved biological targets with the parasites.
Collapse
Affiliation(s)
- Maryna Saayman
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Cassiem Joseph
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - Andrew J Swarts
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| |
Collapse
|
5
|
Gallardo M, Arancibia R, Jiménez C, Wilkinson S, Toro PM, Roussel P, Henry N. Ferrocene-based nitroheterocyclic sulfonylhydrazones: design, synthesis, characterization and trypanocidal properties. J Biol Inorg Chem 2023; 28:549-558. [PMID: 37462740 DOI: 10.1007/s00775-023-02010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023]
Abstract
A series of new ferrocenyl nitroheterocyclic sulfonylhydrazones (1a-4a and 1b-2b) were prepared by the reaction between formyl (R = H) or acetyl (R = CH3) nitroheterocyclic precursors [4/5-NO2(C5H2XCOR), where X = O, S)] and ferrocenyl tosyl hydrazine [(η5-C5H5)Fe(η5-C5H4SO2-NH-NH2)]. All compounds were characterized by conventional spectroscopic techniques. In the solid state, the molecular structures of compounds 1a, 2b, and 3a were determined by single-crystal X-ray diffraction. The compounds showed an E-configuration around the C=N moiety. Evaluation of trypanocidal activity, measured in vitro against the Trypanosoma cruzi and Trypanosoma brucei strains, indicated that all organometallic tosyl hydrazones displayed activity against both parasite species with a higher level of potency toward T. brucei than T. cruzi. Moreover, the biological evaluation showed that the 5-nitroheterocyclic derivatives were more efficient trypanocidal agents than their 4-nitroheterocyclic counterparts.
Collapse
Affiliation(s)
- Miguel Gallardo
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Claudio Jiménez
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Shane Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Patricia M Toro
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - Pascal Roussel
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| | - Natacha Henry
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| |
Collapse
|
6
|
Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg Med Chem Lett 2022; 75:128930. [PMID: 36030001 DOI: 10.1016/j.bmcl.2022.128930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Chagas disease and Human African trypanosomiasis (HAT) are caused by Trypanosoma cruzi, T. brucei rhodesiense or T. b. gambiense parasites, respectively; while Leishmania is caused by parasites from the Leishmania genus. In recent years, many efforts have been addressed to develop inhibitors against these parasites, especially nitro-containing derivatives, which can interfere with essential enzymes from the protozoa. In this review, all anti-trypanosomatidae nitrocompounds reported so far are shown herein, highlighting their activities and SAR analyses, providing all the benefits and problems associated with this ambiguous chemical group. Finally, this review paper will be useful for many research teams around the world, which are searching for novel trypanocidal and leishmanicidal agents.
Collapse
|
7
|
Gómez J, Sierra D, Ojeda C, Thavalingam S, Miller R, Guzmán F, Metzler-Nolte N. Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds. J Biol Inorg Chem 2021; 26:599-615. [PMID: 34292404 DOI: 10.1007/s00775-021-01877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
A series of novel water-soluble short peptide-bioconjugates containing a ferrocenoyl (Fc) or ruthenocenoyl (Rc) unit was synthesized and characterized to combine the unique activity of ferrocene and the isoelectronic ruthenocene with precisely designed peptide structures. We aim at evaluating these bioconjugates as a new class of OrganoMetallic Short AntiMicrobial Peptides (OM-SAMPs). The series of OM-SAMPs was designed with a set of linear and "head-to-tail" cyclic metallocene-based hexapeptides derived from the homo-sequence H-KKKKKK-NH2 by substitution of lysine (K) by tryptophan (W) and by orthogonal derivatization of the ε-N-amine group of lysine by a metallocene moiety. Peptide conjugates were characterized by RP-HPLC, mass spectrometry (ESI and MALDI-TOF) and circular dichroism (CD) spectroscopy. Gram-positive and Gram-negative antibacterial activity testings were carried out to explore the role of insertion of the metallocene fragment into the peptide, and the effect of the modification of the cationic charge and aromatic residues on the physiochemical properties of these OM-SAMPs. These results show that the insertion of two tryptophan residues and ferrocenoyl/ruthenocenoyl moieties into a linear homo-sequence peptides increase significantly their antibacterial activity with minimum inhibitory concentration values as low as 5 μM for the most active compounds. However, "head-to-tail" cyclic metallocene-based hexapeptides were not active against Gram-negative bacteria up to concentrations of 50 μM. These studies provide a better understanding of the role of structural modifications to enhance antibacterial peptide activity, which is promising for their therapeutic application.
Collapse
Affiliation(s)
- Johana Gómez
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaiso, Chile.
| | - Diego Sierra
- Instituto de Química Y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaiso, Chile.
| | - Claudia Ojeda
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaiso, Chile
| | - Sugina Thavalingam
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| | - Reece Miller
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaiso, Chile
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
8
|
Toro PM, Peralta F, Oyarzo J, Wilkinson SR, Zavala M, Arancibia R, Moncada-Basualto M, Brito I, Cisterna J, Klahn AH, López C. Evaluation of trypanocidal properties of ferrocenyl and cyrhetrenyl N-acylhydrazones with pendant 5-nitrofuryl group. J Inorg Biochem 2021; 219:111428. [PMID: 33774450 DOI: 10.1016/j.jinorgbio.2021.111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Four N-acylhydrazones of general formulae [R1-C(O)-NH-N=C(R2)(5-nitrofuryl)] with (R1 = ferrocenyl or cyrhetrenyl and R2 = H or Me) are synthesized and characterized in solution and in the solid-state. Comparative studies of their stability in solution under different experimental conditions and their electrochemical properties are reported. NMR studies reveal that the four compounds are stable in DMSO‑d6 and complementary UV-Vis studies confirm that they also exhibit high stability in mixtures DMSO:H2O at 37 °C. Electrochemical studies show that the half-wave potential of the nitro group of the N-acylhydrazones is smaller than that of the standard drug nifurtimox and the reduction process follows a self-protonation mechanism. In vitro studies on the antiparasitic activities of the four complexes and the nifurtimox against Trypanosoma cruzi and Trypanosoma brucei reveal that: i) the N-acylhydrazones have a potent inhibitory growth activity against both parasites [EC50 in the low micromolar (in T. cruzi) or even in the nanomolar (in T. brucei) range] and ii) cyrhetrenyl derivatives are more effective than their ferrocenyl analogs. Parallel studies on the L6 rat skeletal myoblast cell line have also been conducted, and the selectivity indexes determined. Three of the four N-acylhydrazones showed higher selectivity towards T. brucei than the standard drug nifurtimox. Additional studies suggest that the organometallic compounds are bioactivated by type I nitroreductase enzymes.
Collapse
Affiliation(s)
- Patricia M Toro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
| | - Francisco Peralta
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Juan Oyarzo
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Shane R Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mónica Zavala
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Mauricio Moncada-Basualto
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta, Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta, Chile
| | - A Hugo Klahn
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Concepción López
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
9
|
Muñoz-Osses M, Quiroz J, Vásquez-Martínez Y, Flores E, Navarrete E, Godoy F, Torrent C, Cortez-San Martín M, Gómez A, Mascayano C. Evaluation of cyrhetrenyl and ferrocenyl precursors as 5-lipoxygenase inhibitors – biological and computational studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of precursors derived from ferrocene and cyrhetrene as inhibitors of enzyme 5-hLOX.
Collapse
Affiliation(s)
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP)
- Escuela de Medicina
- Facultad de Ciencias Médicas
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | | - Fernando Godoy
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | - Claudia Torrent
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | | | - Alejandra Gómez
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | |
Collapse
|
10
|
Gómez J, Sierra D, Cárdenas C, Guzmán F. Bio-organometallic Peptide Conjugates: Recent Advances in Their Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200309093938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One area of organometallic chemistry that has attracted great interest in recent
years is the syntheses, characterization and study of organometallic complexes conjugated
to biomolecules with different steric and electronic properties as potential therapeutic
agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview
focuses on the unique structural diversity that has recently been discovered in α-
amino acids and the reactions of metallocene complexes with peptides having different
chemical behavior and potential medical applications. Replacing α-amino acids with metallocene
fragments is an effective way of selectively influencing the physicochemical,
structural, electrochemical and biological properties of the peptides. Consequently, research
in the field of bioorganometallic chemistry offers the opportunity to develop bioactive
metal compounds as an innovative and promising approach in the search for pharmacological control of
different diseases.
Collapse
Affiliation(s)
- Johana Gómez
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Diego Sierra
- Instituto de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaíso, Chile
| | - Constanza Cárdenas
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Fanny Guzmán
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| |
Collapse
|
11
|
Toro PM, Jara DH, Klahn AH, Villaman D, Fuentealba M, Vega A, Pizarro N. Spectroscopic Study of the E/Z Photoisomerization of a New Cyrhetrenyl Acylhydrazone: A Potential Photoswitch and Photosensitizer †. Photochem Photobiol 2020; 97:61-70. [PMID: 32627201 DOI: 10.1111/php.13309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
The new cyrhetrenyl acylhydrazone [(CO)3 Re(η5 -C5 H4 )-C(O)-NH-N = C(CH3 )-(2-C4 H2 S-5-NO2 )] (E-CyAH) has been designed, synthesized and fully characterized to study the effect of having a cyrhetrenyl fragment (sensitizer) covalently bonded to an acylhydrazone moiety (switch), on its photophysical and photochemical properties. The crystal structure reveals that E-CyAH adopts an E-configuration around the iminic moiety [-N = C(CH3 )]. The absorption spectrum of E-CyAH displays two bands at 270 and 380 nm, which are mainly ascribed to π → π* intraligand (IL) and dπ → π* metal-to-ligand charge transfer (MLCT) transitions, being consistent with DFT/TD-DFT calculations. Upon 365 nm irradiation, E-CyAH photoisomerizes to Z-CyAH, as evidenced by UV-Vis and 1 H-NMR spectral changes, with a quantum yield value ΦE -CyAH → Z -CyAH of 0.30. Z-CyAH undergoes a first-order thermal back-isomerization process, with a relatively short half-life τ1/2 of 277 min. Consequently, E-CyAH was quantitatively recovered after 24 h, making it a fully reversible T-type molecular photoswitch. This remarkable behavior allows us to measure the individual photophysical properties for both isomers. In addition, E-CyAH and Z-CyAH efficiently photosensitize the generation of singlet oxygen (O2 (1 Δg )) with good yield (ΦΔ = 0.342).
Collapse
Affiliation(s)
- Patricia M Toro
- Pontificia Universidad Católica de Valparaíso, Instituto de Química, Valparaíso, Chile
| | - Danilo H Jara
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Viña del Mar, Chile
| | - A Hugo Klahn
- Pontificia Universidad Católica de Valparaíso, Instituto de Química, Valparaíso, Chile
| | - David Villaman
- Pontificia Universidad Católica de Valparaíso, Instituto de Química, Valparaíso, Chile
| | - Mauricio Fuentealba
- Pontificia Universidad Católica de Valparaíso, Instituto de Química, Valparaíso, Chile
| | - Andrés Vega
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Nancy Pizarro
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Viña del Mar, Chile
| |
Collapse
|
12
|
Condensation and substitution products obtained in reactions of isomeric bromo-nitrofuraldehydes with ferrocenylamine: Electrochemistry and anti-parasitic evaluation. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Rivas F, Medeiros A, Comini M, Suescun L, Rodríguez Arce E, Martins M, Pinheiro T, Marques F, Gambino D. Pt-Fe ferrocenyl compounds with hydroxyquinoline ligands show selective cytotoxicity on highly proliferative cells. J Inorg Biochem 2019; 199:110779. [DOI: 10.1016/j.jinorgbio.2019.110779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 01/23/2023]
|
14
|
Gómez J, Sierra D, Fuentealba M, Artigas V, Klahn AH. Homo- and heterobimetallic azines derived from ferrocene and cyrhetrene: Synthesis, structural characterization and electrochemical studies. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Paucar R, Martín-Escolano R, Moreno-Viguri E, Cirauqui N, Rodrigues CR, Marín C, Sánchez-Moreno M, Pérez-Silanes S, Ravera M, Gabano E. A step towards development of promising trypanocidal agents: Synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives. Eur J Med Chem 2019; 163:569-582. [DOI: 10.1016/j.ejmech.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
16
|
Yahyaoui M, Bouchama A, Anak B, Chiter C, Djedouani A, Rabilloud F. Synthesis, molecular structure analyses and DFT studies on new asymmetrical azines based Schiff bases. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Oyarzo J, Bosque R, Toro P, Silva CP, Arancibia R, Font-Bardía M, Artigas V, Calvis C, Messeguer R, Klahn AH, López C. A novel type of organometallic 2-R-2,4-dihydro-1H-3,1-benzoxazine with R = [M(η5-C5H4)(CO)3] (M = Re or Mn) units. Experimental and computational studies of the effect of substituent R on ring-chain tautomerism. Dalton Trans 2019; 48:1023-1039. [DOI: 10.1039/c8dt03265c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel 2-cyrhetrenyl and cymantrenyl-2,4-dihydro-1H-3,1-benzoxazines.
Collapse
|
18
|
Cyrhetrenylaniline and new organometallic phenylimines derived from 4- and 5-nitrothiophene: Synthesis, characterization, X-Ray structures, electrochemistry and in vitro anti- T. brucei activity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Lee GA, Lin HC, Lee HY, Chen CH, Huang HY. Ipso
Nitration of 2-Halothiophenes with Silver Nitrate. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gon-Ann Lee
- Department of Chemistry; Fu Jen Catholic University, Xinzhuang; New Taipei 24205, R.O.C. Taiwan
| | - Hung-Chun Lin
- Department of Chemistry; Fu Jen Catholic University, Xinzhuang; New Taipei 24205, R.O.C. Taiwan
| | - Hsin-Yi Lee
- Department of Chemistry; Fu Jen Catholic University, Xinzhuang; New Taipei 24205, R.O.C. Taiwan
| | - Chien-Hsun Chen
- Department of Chemistry; Fu Jen Catholic University, Xinzhuang; New Taipei 24205, R.O.C. Taiwan
| | - Hsiang-Yun Huang
- Department of Chemistry; Fu Jen Catholic University, Xinzhuang; New Taipei 24205, R.O.C. Taiwan
| |
Collapse
|
20
|
Pigeon P, Wang Y, Top S, Najlaoui F, Garcia Alvarez MC, Bignon J, McGlinchey MJ, Jaouen G. A New Series of Succinimido-ferrociphenols and Related Heterocyclic Species Induce Strong Antiproliferative Effects, Especially against Ovarian Cancer Cells Resistant to Cisplatin. J Med Chem 2017; 60:8358-8368. [DOI: 10.1021/acs.jmedchem.7b00743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pascal Pigeon
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, F-75005 Paris, France
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Yong Wang
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, F-75005 Paris, France
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Siden Top
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Feten Najlaoui
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Maria Concepcion Garcia Alvarez
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles,
UPR 2301 du CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Jérôme Bignon
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles,
UPR 2301 du CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Michael J. McGlinchey
- UCD
School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, F-75005 Paris, France
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| |
Collapse
|