1
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
2
|
Ileperuma CV, Garcés-Garcés J, Shao S, Fernández-Lázaro F, Sastre-Santos Á, Karr PA, D'Souza F. Panchromatic Light-Capturing Bis-styryl BODIPY-Perylenediimide Donor-Acceptor Constructs: Occurrence of Sequential Energy Transfer Followed by Electron Transfer. Chemistry 2023; 29:e202301686. [PMID: 37428999 DOI: 10.1002/chem.202301686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Two wide-band-capturing donor-acceptor conjugates featuring bis-styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the 1 PDI* to BODIPY, and a subsequent electron transfer from the 1 BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground-state interactions between the donor and acceptor entities. Steady-state fluorescence and excitation spectral recordings provided evidence of singlet-singlet energy transfer in these dyads, and quenched fluorescence of bis-styrylBODIPY emission in the dyads suggested additional photo-events. The facile oxidation of bis-styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1 and S2 states, derived from time-dependent DFT calculations, supported excited charge transfer in these dyads. Spectro-electrochemical studies on one-electron-oxidized and one-electron-reduced dyads and the monomeric precursor compounds were also performed in a thin-layer optical cell under corresponding applied potentials. From this study, both bis-styrylBODIPY⋅+ and PDI⋅- could be spectrally characterizes and were subsequently used in characterizing the electron-transfer products. Finally, pump-probe spectral studies were performed in dichlorobenzene under selective PDI and bis-styrylBODIPY excitation to secure energy and electron-transfer evidence. The measured rate constants for energy transfer, kENT , were in the range of 1011 s-1 , while the electron transfer rate constants, kET , were in the range of 1010 s-1 , thus highlighting their potential use in solar energy harvesting and optoelectronic applications.
Collapse
Affiliation(s)
- Chamari V Ileperuma
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - José Garcés-Garcés
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Shuai Shao
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
3
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
4
|
Nieto CI, Sanz D, Claramunt RM, Alkorta I, Elguero J. Pyrazaboles and pyrazolylboranes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Alkorta I, Elguero J. Theoretical studies of conformational analysis and intramolecular dynamic phenomena. Struct Chem 2019. [DOI: 10.1007/s11224-019-01370-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Synthesis, crystal structures and electrochemical properties of ferrocenyl imidazole derivatives. Heliyon 2019; 5:e02580. [PMID: 31692585 PMCID: PMC6806399 DOI: 10.1016/j.heliyon.2019.e02580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/05/2019] [Accepted: 10/02/2019] [Indexed: 01/11/2023] Open
Abstract
Six ferrocenyl imidazole derivatives substituted with -Cl, -NO2 and -CH3 on the 2-position of the 1H-imidazole ring have been synthesized. Of the six compounds, the di-substituted ferrocenes, i.e. compounds 4 (1,1′-ferrocenylmethyl(2-chloroimidazole)), 5 (1,1′-ferrocenyl(2-nitroimidazole)), and 6 (1,1′-ferrocenylmethyl(2-methylimidazole)) are reported for the first time. The structure-property relationships of compounds 4, 5 and 6 were investigated by means of UV-visible, FTIR, 1H-NMR, 13C-NMR spectroscopy and electrochemical studies. UV-visible analysis in acetonitrile showed that the π -π* band of compounds 2 (1-ferrocenylmethyl(2-nitroimidazole)) and 5 appeared at longer wavelength compared to 1 (1-ferrocenylmethyl(2-chloroimidazole)), 3 (1-ferrocenylmethyl(2-methylimidazole)), 4 and 6. This phenomenon is due to the different electronics around the imidazole moieties. In cyclic voltammetry analysis, all compounds exhibited a quasi-reversible redox wave for the ferrocenyl and imidazole moieties. Density functional theoretical (DFT) calculations with the B3LYP/6-311+G(d) basis set were performed on compounds 1–6, and the calculated HUMO-LUMO band gap energies correlated with those obtained from electrochemical and spectroscopic data. The X-ray crystallographic analysis highlighted the effect of electron-withdrawing and electron-donating substituents on the conformation of the cyclopentadienyl rings attached to the ferrocenyl moiety.
Collapse
|
7
|
Yadav SB, Erande Y, Sreenath MC, Chitrambalam S, Joe IH, Sekar N. Pyrene Based NLOphoric D‐π‐A‐π‐D Coumarin‐Chalcone and Their Red Emitting OBO Difluoride Complex: Synthesis, Solvatochromism, Z‐scan, and Detailed TD‐DFT Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201901948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sagar B. Yadav
- Department of Dyestuff TechnologyInstitute of Chemical Technology Matunga, Mumbai India
| | - Yogesh Erande
- Department of Dyestuff TechnologyInstitute of Chemical Technology Matunga, Mumbai India
| | - Mavila C. Sreenath
- Centre for Molecular and Biophysics ResearchDepartment of PhysicsMar Ivanios College, Thiruananthapuram Kerala 695015. India
| | - Subramaniyan Chitrambalam
- Centre for Molecular and Biophysics ResearchDepartment of PhysicsMar Ivanios College, Thiruananthapuram Kerala 695015. India
| | - Isaac H. Joe
- Centre for Molecular and Biophysics ResearchDepartment of PhysicsMar Ivanios College, Thiruananthapuram Kerala 695015. India
| | - Nagaiyan Sekar
- Department of Dyestuff TechnologyInstitute of Chemical Technology Matunga, Mumbai India
| |
Collapse
|
8
|
Kivrak A, Zobi C, Torlak Y, Çamlısoy Y, Kuş M, Kivrak H. Synthesis of tetracyanoethylene-substituted ferrocene and its device properties. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arif Kivrak
- Department of Chemistry, Faculty of Sciences; Van Yüzüncü Yil University; Van Turkey
| | - Cengiz Zobi
- Department of Chemistry, Faculty of Sciences; Van Yüzüncü Yil University; Van Turkey
| | - Yasemin Torlak
- Cal Vocational High School; Pamukkale University; Denizli Turkey
| | - Yeşim Çamlısoy
- Department of Chemical Engineering, Faculty of Engineering; Yeditepe University; Istanbul Turkey
| | - Mahmut Kuş
- Department of Chemical Engineering, Faculty of Engineering and Architecture; Selçuk University; Konya Turkey
| | - Hilal Kivrak
- Department of Chemical Engineering, Faculty of Engineering; Van Yüzüncü Yil University; Van Turkey
| |
Collapse
|
9
|
Michinobu T, Diederich F. The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores. Angew Chem Int Ed Engl 2018; 57:3552-3577. [DOI: 10.1002/anie.201711605] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 1 52-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
10
|
Michinobu T, Diederich F. Die [2+2]-Cycloadditions-Retroelektrocyclisierungs(CA-RE)-Klick-Reaktion: ein einfacher Zugang zu molekularen und polymeren Push-pull-Chromophoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711605] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH-Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
11
|
Patil Y, Popli C, Misra R. Near-infrared absorbing tetracyanobutadiene-bridged diketopyrrolopyrroles. NEW J CHEM 2018. [DOI: 10.1039/c7nj05162j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we have synthesized near-infra red absorbing TCBD bridged diketopyrrolopyrroles by a [2+2] cycloaddition–retroelectrocyclization reaction in order to see the effects of end capping donors and electron-withdrawing TCBD on the optical and electrochemical properties.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Charu Popli
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|