1
|
Borah ST, Das B, Biswas P, Mallick AI, Gupta P. Aqua-friendly organometallic Ir-Pt complexes: pH-responsive AIPE-guided imaging of bacterial cells. Dalton Trans 2023; 52:2282-2292. [PMID: 36723088 DOI: 10.1039/d2dt03390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, the aggregation-induced photoluminescence emission (AIPE) of three water-soluble heterobimetallic Ir-Pt complexes was reported with insight into their photophysical and electrochemical properties and imaging of bacterial cells. An alkyne appended Schiff's base L, bridges bis-cyclometalated iridium(III) and platinum(II) terpyridine centre. The Schiff's base (N-N fragment) serves as the ancillary ligand to the iridium(III) centre, while the alkynyl end is coordinated to platinum(II). The pH and ionic strength influence the aggregation kinetics of the alkynylplatinum(II) fragment, leading to metal-metal and π-π interactions with the emergence of a triplet metal-metal-to-ligand charge transfer (3MMLCT) emission. The excellent reversibility and photostability of aggregation-induced emission (AIE) of these aqua-friendly complexes were tested for their ability to sense and selectively image E. coli cells at various pH values.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
2
|
Liu QY, Qi YY, Cai DH, Liu YJ, He L, Le XY. Sparfloxacin - Cu(II) - aromatic heterocyclic complexes: synthesis, characterization and in vitro anticancer evaluation. Dalton Trans 2022; 51:9878-9887. [PMID: 35713093 DOI: 10.1039/d2dt00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.
Collapse
Affiliation(s)
- Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yong-Yu Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
4
|
Qi YY, Gan Q, Liu YX, Xiong YH, Mao ZW, Le XY. Two new Cu(II) dipeptide complexes based on 5-methyl-2-(2′-pyridyl)benzimidazole as potential antimicrobial and anticancer drugs: Special exploration of their possible anticancer mechanism. Eur J Med Chem 2018; 154:220-232. [DOI: 10.1016/j.ejmech.2018.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
|
5
|
Yan FF, Ma CL, Li QL, Zhang SL, Ru J, Cheng S, Zhang RF. Syntheses, structures and anti-tumor activity of four organotin(iv) dicarboxylates based on (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid. NEW J CHEM 2018. [DOI: 10.1039/c8nj00431e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel organotin complexes, derived from flexible (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid (H2tzda), have been synthesized and characterized by elemental analysis, FT-IR, NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Jing Ru
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shuang Cheng
- School of Agriculture
- Liaocheng University
- Liaocheng
- China
| | - Ru-Fen Zhang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|