1
|
Youmans DD, Moore AM, Stanley LM. Synthesis of Highly Substituted Oxaboroles from Oxaboranes via a Selective Petasis Borono-Mannich Reaction. Org Lett 2024; 26:7297-7301. [PMID: 39172524 DOI: 10.1021/acs.orglett.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We present a novel and efficient method for the synthesis of highly substituted non-benzofused oxaboroles. Reactions of oxaboranes, morpholine, and salicylaldehyde in toluene heated to 85 °C for 4 h produce the corresponding oxaborole products in yields up to 93%. The process is effective across a diverse substrate scope and can be scaled to produce gram quantities of densely functionalized oxaboroles in excellent yield. Exclusive aryl transfer over vinyl transfer is observed. Computational insights further elucidate the inherent selectivity of this process.
Collapse
Affiliation(s)
- Dustin D Youmans
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Austin M Moore
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Nowicki K, Krajewska J, Stępniewski TM, Wielechowska M, Wińska P, Kaczmarczyk A, Korpowska J, Selent J, Marek-Urban PH, Durka K, Woźniak K, Laudy AE, Luliński S. Exploiting thiol-functionalized benzosiloxaboroles for achieving diverse substitution patterns - synthesis, characterization and biological evaluation of promising antibacterial agents. RSC Med Chem 2024; 15:1751-1772. [PMID: 38784477 PMCID: PMC11110727 DOI: 10.1039/d4md00061g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Benzosiloxaboroles are an emerging class of medicinal agents possessing promising antimicrobial activity. Herein, the expedient synthesis of two novel thiol-functionalized benzosiloxaboroles 1e and 2e is reported. The presence of the SH group allowed for diverse structural modifications involving the thiol-Michael addition, oxidation, as well as nucleophilic substitution giving rise to a series of 27 new benzosiloxaboroles containing various polar functional groups, e.g., carbonyl, ester, amide, imide, nitrile, sulfonyl and sulfonamide, and pendant heterocyclic rings. The activity of the obtained compounds against selected bacterial and yeast strains, including multidrug-resistant clinical strains, was investigated. Compounds 6, 12, 20 and 22-24 show high activity against Staphylococcus aureus, including both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) strains, with MIC values in the range of 1.56-12.5 μg mL-1, while their cytotoxicity is relatively low. The in vitro assay performed with 2-(phenylsulfonyl)ethylthio derivative 20 revealed that, in contrast to the majority of known antibacterial oxaboroles, the plausible mechanism of antibacterial action, involving inhibition of the leucyl-tRNA synthetase enzyme, is not responsible for the antibacterial activity. Structural bioinformatic analysis involving molecular dynamics simulations provided a possible explanation for this finding.
Collapse
Affiliation(s)
- Krzysztof Nowicki
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - Tomasz M Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Medicine and Life Sciences, Pompeu Fabra University (UPF) Carrer del Dr. Aiguader, 88 08003 Barcelona Spain
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Kaczmarczyk
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Julia Korpowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Jana Selent
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Medicine and Life Sciences, Pompeu Fabra University (UPF) Carrer del Dr. Aiguader, 88 08003 Barcelona Spain
| | - Paulina H Marek-Urban
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, University of Warsaw Pasteura 1 00-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
3
|
Khairnar P, Saathoff JM, Cook DW, Hochstetler SR, Pandya U, Robinson SJ, Satam V, Donsbach KO, Gupton BF, Jin LM, Shanahan CS. Practical Synthesis of 6-Amino-1-hydroxy-2,1-benzoxaborolane: A Key Intermediate of DNDI-6148. Org Process Res Dev 2024; 28:1213-1223. [PMID: 38660377 PMCID: PMC11036395 DOI: 10.1021/acs.oprd.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.
Collapse
Affiliation(s)
- Pankaj
V. Khairnar
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - John M. Saathoff
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Daniel W. Cook
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Samuel R. Hochstetler
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Urvish Pandya
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Stephen J. Robinson
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Vijay Satam
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Kai O. Donsbach
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - B. Frank Gupton
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Li-Mei Jin
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Charles S. Shanahan
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| |
Collapse
|
4
|
Huang DC, He Z, Guo D, Deng F, Bian Q, Zhang H, Ali AS, Zhang MZ, Zhang WH, Gu YC. Discovery of Novel Benzoxaborole-Containing Streptochlorin Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6226-6235. [PMID: 37053087 DOI: 10.1021/acs.jafc.2c08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Streptochlorin is a kind of indole alkaloid derived from marine microorganisms. It is a promising lead compound due to its potent bioactivity in preventing many phytopathogens, as shown in our previous study. To explore the potential applications of this natural product, a series of novel benzoxaborole-containing streptochlorin derivatives were designed and synthesized through a one-step and catalyst-free reaction in water at room temperature. All target compounds were first screened for their antifungal profiles in vitro against six common phytopathogenic fungi. The results of bioassay revealed that most of the designed compounds exhibited more significant antifungal activities against Botrytis cinrea, Gibberella zeae, Rhizoctorzia solani, Colletotrichum lagenarium, and alternaria leaf spot under the concentration of 50 μg/mL, and this is highlighted by compounds 4i and 5f, which demonstrated impressive antifungal effects against G. zeae and R. solani, with their corresponding EC50 values 0.2983 and 0.2657 μg/mL, which are obviously better than positive control flutriafol and boscalid (5.2606 and 1.2048 μg/mL, respectively). Scanning electron microscopy on the hyphae morphology showed that compound 5b might cause mycelial abnormalities of G. zeae. 3D-QSAR studies of CoMFA and CoMSIA were carried out on 29 target compounds with antifungal activity against B. cinrea. The analysis results indicated that introducing appropriate electronegative groups at the 5-position of benzoxaborole and the 4,5-positions of the indole ring could effectively improve the anti-B. cinrea activity. Moreover, compound 5b showed good antifungal activities in vivo against Phytophthora capsici. Molecular docking was further explored to ascertain the practical value of the active compound as a potential inhibitor of LeuRS. The abovementioned results indicate that the designed benzoxaborole-containing streptochlorin derivatives could be further studied as template molecules of novel antifungal agents.
Collapse
Affiliation(s)
- Dai-Chuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuo He
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dale Guo
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdallah S Ali
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| |
Collapse
|
5
|
Liao S, Liu K, Wu H, Kuang Q, Hu X, Li Y, Lu H, Yuan J. A rapid construction of 1,3,2-benzodiazaborininones [R-B(aam)] from boronic acids and anthranilamides. RSC Adv 2023; 13:2570-2573. [PMID: 36741161 PMCID: PMC9847347 DOI: 10.1039/d2ra06573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
A simple, efficient and mild methodology for the synthesis of 1,3,2-benzodiazaborininones [R-B(aam)] from boronic acids and anthranilamides on ethyl acetate is described. A series of 1,3,2-benzodiazaborininones were prepared in moderate to excellent yields at room temperature without dehydrating agents, metal catalysts, corrosive acids or other additives. Meanwhile, a multi-gram scale reaction is also performed to ensure the scalability of the reaction, and the product can be conveniently isolated by simple filtration.
Collapse
Affiliation(s)
- Siwei Liao
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Kai Liu
- Department of Pharmacy, Chongqing Public Health Medical CenterPR China
| | - Huili Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Qiulin Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Xueyuan Hu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Yihao Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Hongxiao Lu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| |
Collapse
|
6
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
7
|
Wu Y, Shen P, Duan W, Ma Y. Asymmetric Boration of para-Quinone Methides Catalyzed by N-Heterocyclic Carbene. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Vibrational Properties of Benzoxaboroles and Their Interactions with Candida albicans’ LeuRS. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Benzoxaboroles have emerged over the past decade mainly due to their growing medicinal importance. Regarding the wide application of IR spectroscopy in the pharmaceutical industry, the vibrational properties of over a dozen of benzoxaboroles were described, based on results of DFT calculations as well as IR and Raman spectra measurements. Investigated series of compounds included the currently available antifungal drug (Tavaborole, AN2690) as well as its derivatives. An intense and well-isolated band corresponding to the B-OH group stretching vibrations was present in all experimental IR spectra in the range of 1446–1414 cm−1 and can be considered as characteristic for benzoxaboroles. The vibrational properties of benzoxaboroles are shown to be affected by the formation of intramolecular as well as intermolecular hydrogen bonds, which should also influence the interactions of benzoxaboroles with biomolecules and impact on their biological functions. Docking studies of the benzoxaboroles’ adenosine monophosphate (AMP) spiroboronates into the Candida albicans leucyl-RS synthetase binding pocket showed that the introduction of an amine substituent has a strong influence on their binding. The determined values of inhibition constants manifest high potential of some of the investigated molecules as possible inhibitors of that enzyme.
Collapse
|
9
|
Singh A, Kumar R. Sustainable Passerini-tetrazole three component reaction (PT-3CR): selective synthesis of oxaborol-tetrazoles. Chem Commun (Camb) 2021; 57:9708-9711. [PMID: 34555131 DOI: 10.1039/d1cc03256a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A sustainable catalyst- and solvent-free Passerini-tetrazole three component reaction (PT-3CR) has been developed for the selective synthesis of benzoxaborol-tetrazoles for the first time. The synthetic potential of oxaboroles was demonstrated towards various functionalized tetrazoles, which are otherwise difficult to achieve through conventional PT-3CR from aromatic aldehydes/ketones. The reaction features high practicality, broad substrate scope and excellent yields (80-98%). Preliminary results of the asymmetric PT-3CR are also shown for the synthesis of chiral benzoxaboroles.
Collapse
Affiliation(s)
- Akansha Singh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| |
Collapse
|
10
|
Xiao YC, Chen XP, Deng J, Yan YH, Zhu KR, Li G, Yu JL, Brem J, Chen F, Schofield CJ, Li GB. Design and enantioselective synthesis of 3-(α-acrylic acid) benzoxaboroles to combat carbapenemase resistance. Chem Commun (Camb) 2021; 57:7709-7712. [PMID: 34259249 PMCID: PMC8330636 DOI: 10.1039/d1cc03026d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022]
Abstract
Chiral 3-substituted benzoxaboroles were designed as carbapenemase inhibitors and efficiently synthesised via asymmetric Morita-Baylis-Hillman reaction. Some of the benzoxaboroles were potent inhibitors of clinically relevant carbapenemases and restored the activity of meropenem in bacteria harbouring these enzymes. Crystallographic analyses validate the proposed mechanism of binding to carbapenemases, i.e. in a manner relating to their antibiotic substrates. The results illustrate how combining a structure-based design approach with asymmetric catalysis can efficiently lead to potent β-lactamase inhibitors and provide a starting point to develop drugs combatting carbapenemases.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiao-Pan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ji Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Gen Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jürgen Brem
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fener Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021; 26:3309. [PMID: 34072937 PMCID: PMC8199504 DOI: 10.3390/molecules26113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Paolo Saul Coghi
- School of Pharmacy Macau, University of Science and Technology, Taipa Macau 999078, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa Macau 999078, China
| | - Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Hongming Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| |
Collapse
|
12
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021; 90:451-487. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
13
|
Cheng Q, Ding S, Zheng Y, Wu M, Peng YY, Diaz-Dussan D, Shi Z, Liu Y, Zeng H, Cui Z, Narain R. Dual Cross-Linked Hydrogels with Injectable, Self-Healing, and Antibacterial Properties Based on the Chemical and Physical Cross-Linking. Biomacromolecules 2021; 22:1685-1694. [PMID: 33779160 DOI: 10.1021/acs.biomac.1c00111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable hydrogels have become a promising material for biomedical engineering applications, but microbial infection remains a common challenge in their application. In this study, we presented an injectable antibacterial hydrogel with self-healing property based on a dual cross-linking network structure of dynamic benzoxaborole-sugar and quadruple hydrogen bonds of the 2-ureido-4-pyrimidone (UPy) moieties at physiological pH. Dynamic rheological experiments demonstrated the gelatinous behavior of the double cross-linking network (storage modulus G' > loss modulus G″), and the modulus showed frequency-dependent behavior. The noncovalent interactions of UPy units in the polymer segment endowed the injectable hydrogels with good mechanical strength. By varying the solid contents, UPy units, as well as the pH, the mechanical properties of hydrogels could be controlled. Additionally, the hydrogels exhibited not only excellent self-healing and injectable properties but also pH and sugar dual-responsiveness. Moreover, the hydrogels could effectively inhibit the growth of both Escherichia coli and Staphylococcus aureus while exhibiting low toxicity. 3D cell encapsulation experiment results also demonstrated the potential use of these hydrogels as cell culture scaffolds. Taken together, the injectability, self-healing, and antimicrobial properties of the prepared hydrogels showed great promise for translational medicine, such as cell and tissue engineering applications.
Collapse
Affiliation(s)
- Qiuli Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shuxiang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yan Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zuosen Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zhanchen Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
14
|
Zhao J, Chen J, Xu Q, Li H. Synthesis of Benzoxaboroles by ortho-Oxalkylation of Arylboronic Acids with Aldehydes/Ketones in the Presence of Brønsted Acids. Org Lett 2021; 23:1986-1990. [PMID: 33646001 DOI: 10.1021/acs.orglett.1c00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we describe a simple and efficient synthesis of benzoxaboroles from arylboronic acids and aldehydes or ketones in the presence of a Brønsted acid. This method greatly simplifies the starting materials and reduces the number of reaction steps. The reaction can also be accomplished with acetals and ketals. The reaction has a wide substrate scope and high practicability.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Qing Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huan Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
15
|
Su X, Bartholome TA, Tidwell JR, Pujol A, Yruegas S, Martinez JJ, Martin CD. 9-Borafluorenes: Synthesis, Properties, and Reactivity. Chem Rev 2021; 121:4147-4192. [DOI: 10.1021/acs.chemrev.0c01068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaojun Su
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - John R. Tidwell
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Alba Pujol
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jesse J. Martinez
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Caleb D. Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
16
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
17
|
Facile synthesis of 5-arylidene rhodanine derivatives using Na2SO3 as an eco-friendly catalyst. Access to 2-mercapto-3-aryl-acrylic acids and a benzoxaborole derivative. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Lee SC, Gillispie G, Prim P, Lee SJ. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chem Rev 2020; 120:10834-10886. [PMID: 32815369 PMCID: PMC7673205 DOI: 10.1021/acs.chemrev.0c00015] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
19
|
Jonnalagadda SK, Wielenberg K, Ronayne CT, Jonnalagadda S, Kiprof P, Jonnalagadda SC, Mereddy VR. Synthesis and biological evaluation of arylphosphonium-benzoxaborole conjugates as novel anticancer agents. Bioorg Med Chem Lett 2020; 30:127259. [DOI: 10.1016/j.bmcl.2020.127259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/09/2023]
|
20
|
Ceradini D, Shubin K. New methods for the synthesis of cyclic boronic acids (microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02659-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Walker AL, Denis A, Bingham RP, Bouillot A, Edgar EV, Ferrie A, Holmes DS, Laroze A, Liddle J, Fouchet MH, Moquette A, Nassau P, Pearce AC, Polyakova O, Smith KJ, Thomas P, Thorpe JH, Trottet L, Wang Y, Hovnanian A. Design and development of a series of borocycles as selective, covalent kallikrein 5 inhibitors. Bioorg Med Chem Lett 2019; 29:126675. [DOI: 10.1016/j.bmcl.2019.126675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022]
|
22
|
An Efficient Ni/Pd Catalyzed Chemoselective Synthesis of 1,3,2‐Benzodiazaborininones from Boronic Acids and Anthranilamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Larcher A, Nocentini A, Supuran CT, Winum JY, van der Lee A, Vasseur JJ, Laurencin D, Smietana M. Bis-benzoxaboroles: Design, Synthesis, and Biological Evaluation as Carbonic Anhydrase Inhibitors. ACS Med Chem Lett 2019; 10:1205-1210. [PMID: 31413806 DOI: 10.1021/acsmedchemlett.9b00252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
The synthesis, characterization, and biological evaluation of a series of compounds incorporating two or three benzoxaborole moieties is reported. Three different synthetic strategies were used to explore within this series as much chemical space as possible, all starting from the 6-aminobenzoxaborole reagent: amide coupling, imine bond formation, and squarate coupling. Eleven new compounds were isolated in pure form, and single crystals were obtained for two of them. These compounds were then evaluated as carbonic anhydrase inhibitors against the cytosolic hCA I and II and the transmembrane hCA IV, IX, and XII isoforms. While the benzoxaborole scaffold has been recently introduced as a new chemotype for carbonic anhydrase inhibition, these new multivalent derivatives exhibited superior inhibitory activity against the tumor-associated isoform hCA IX. In particular, compared to monovalent 6-aminobenzoxaborole (K I = 813 nM) and 6-carboxybenzoxaborole (K I = 400 nM), derivative 2h characterized by a glutamic acid structural core and two benzoxaborole moieties was found to be more potent (K I = 64 nM) and more selective over human hCA II.
Collapse
Affiliation(s)
- Adèle Larcher
- Institut Charles Gerhardt de Montpellier (ICGM), Université de Montpellier, UMR 5253, CNRS, ENSCM, Place E. Bataillon, CC1701, 34095 Montpellier Cedex 05, France
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| | - Alessio Nocentini
- NEUROFARBA Dept., University of Florence, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Dept., University of Florence, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| | - Arie van der Lee
- Institut Européen des Membranes, Université
de Montpellier, UMR 5632 CNRS ENSCM, 34095 Montpellier, Cedex 05, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier (ICGM), Université de Montpellier, UMR 5253, CNRS, ENSCM, Place E. Bataillon, CC1701, 34095 Montpellier Cedex 05, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| |
Collapse
|
24
|
Bochat AJ, Shoba VM, Takacs JM. Ligand-Controlled Regiodivergent Enantioselective Rhodium-Catalyzed Alkene Hydroboration. Angew Chem Int Ed Engl 2019; 58:9434-9438. [PMID: 31067341 DOI: 10.1002/anie.201903308] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 12/31/2022]
Abstract
Regiocontrol in the rhodium-catalyzed boration of vinyl arenes is typically dominated by the presence of the conjugated aryl substituent. However, small differences in TADDOL-derived chiral monophosphite ligands can override this effect and direct rhodium-catalyzed hydroboration of β-aryl and β-heteroaryl methylidenes by pinacolborane to selectively produce either chiral primary or tertiary borated products. The regiodivergent behavior is coupled with enantiodivergent addition of the borane. The nature of the TADDOL backbone substituents and that of the phosphite moiety function synergistically to direct the sense and extent of regioselectivity and enantioinduction. Twenty substrates are shown to undergo each reaction mode with regioselectivity values reaching greater than 20:1 and enantiomer ratios reaching up to 98:2. A variety of subsequent transformations illustrate the potential utility of each product.
Collapse
Affiliation(s)
- Andrew J Bochat
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 807 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - Veronika M Shoba
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 807 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - James M Takacs
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 807 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| |
Collapse
|
25
|
Bochat AJ, Shoba VM, Takacs JM. Ligand‐Controlled Regiodivergent Enantioselective Rhodium‐Catalyzed Alkene Hydroboration. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903308] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew J. Bochat
- Department of Chemistry and Nebraska Center for Integrated Biomolecular CommunicationUniversity of Nebraska-Lincoln 807 Hamilton Hall Lincoln NE 68588-0304 USA
| | - Veronika M. Shoba
- Department of Chemistry and Nebraska Center for Integrated Biomolecular CommunicationUniversity of Nebraska-Lincoln 807 Hamilton Hall Lincoln NE 68588-0304 USA
| | - James M. Takacs
- Department of Chemistry and Nebraska Center for Integrated Biomolecular CommunicationUniversity of Nebraska-Lincoln 807 Hamilton Hall Lincoln NE 68588-0304 USA
| |
Collapse
|
26
|
Chen Y, Tan Z, Wang W, Peng YY, Narain R. Injectable, Self-Healing, and Multi-Responsive Hydrogels via Dynamic Covalent Bond Formation between Benzoxaborole and Hydroxyl Groups. Biomacromolecules 2018; 20:1028-1035. [DOI: 10.1021/acs.biomac.8b01652] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yangjun Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zhengzhong Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
27
|
Psurski M, Łupicka-Słowik A, Adamczyk-Woźniak A, Wietrzyk J, Sporzyński A. Discovering simple phenylboronic acid and benzoxaborole derivatives for experimental oncology - phase cycle-specific inducers of apoptosis in A2780 ovarian cancer cells. Invest New Drugs 2018; 37:35-46. [PMID: 29779163 PMCID: PMC6510839 DOI: 10.1007/s10637-018-0611-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
Objective The aim of the study was to evaluate the antiproliferative potential of simple phenylboronic acid and benzoxaborole derivatives as well as to provide preliminary insight into their mode of action in cancer cells in vitro. Methods The antiproliferative activity was assessed in five diverse cancer cell lines via the SRB method (sulforhodamine B) or MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method after 72 h of treatment. Further studies of the mechanism of action consisted of the influence of the compounds on cell cycle progression and apoptosis induction, which was assessed by flow cytometry, caspase-3 enzymatic activity, fluorescence microscopy and western blot analysis. Results A clear structure-activity relationship was observed for both groups of compounds with several representatives evaluated as highly active antiproliferative agents with low micromolar [Formula: see text] values. 2-Fluoro-6-formylphenylboronic acid (18) and 3-morpholino-5-fluorobenzoxaborole (27) exhibited strong cell cycle arrest induction in G2/M associated with caspase-3 activation in an A2780 ovarian cancer cell line. These events were accompanied by a mitotic catastrophe cell morphology and an increased percentage of aneuploid and tetraploid cells. Further experiments indicated that the compounds were phase cycle-specific agents since cells co-treated with hydroxyurea were less sensitive. The observed cell cycle arrest resulted from significant p21 accumulation and was associated neither with cyclin B1 nor β-tubulin degradation. Conclusion Phenylboronic acid and benzoxaborole derivatives were found to be highly promising antiproliferative and proapoptotic compounds with a cell cycle-specific mode of action. The presented data support their candidacy for further studies as a novel class of potential anticancer agents.
Collapse
Affiliation(s)
- Mateusz Psurski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla St, 53114, Wrocław, Poland.
| | - Agnieszka Łupicka-Słowik
- Department of Medicinal Chemistry and Microbiology, Wrocław University of Science and Technology, 29 Wybrzeże Wyspiańskiego St, 50370, Wrocław, Poland
| | | | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla St, 53114, Wrocław, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St, 00664, Warsaw, Poland
| |
Collapse
|