1
|
Řezníčková E, Bárta O, Milde D, Kryštof V, Štarha P. Anticancer dinuclear Ir(III) complex activates Nrf2 and interferes with NAD(H) in cancer cells. J Inorg Biochem 2025; 262:112704. [PMID: 39255589 DOI: 10.1016/j.jinorgbio.2024.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Dinuclear complex [Ir2(μ-L1)(η5-Cp*)2Cl2](PF6)2 (1) exhibits low micromolar cytotoxic activity in vitro in various human cancer cells (GI50 = 1.7-3.0 μM) and outperformed its mononuclear analogue [Ir(η5-Cp*)Cl(L2)]PF6 (2; GI50 > 40.0 μM); Cp* = pentamethylcyclopentadienyl, L1 = 4-chloro-2,6-bis[5-(pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridine, L2 = 5-(pyridin-2-yl)-1,3,4-thiadiazol-2-amine. Compound 1 upregulated the Keap1/Nrf2 oxidative stress-protective pathway in the treated MV4-11 acute myeloid leukemia cells. In connection with the redox-mediated mode of action of 1, its NADH-oxidizing activity was detected in solution (1H NMR), while NAD+ remained intact (with formate as a hydride source). Surprisingly, only negligible NADH oxidation was detected in the presence of the reduced glutathione and ascorbate. Following the results of in-solution experiments, NAD(H) concentration was assessed in 1-treated MV4-11 cancer cells. Besides the intracellular NADH oxidation in the presence of 1, the induced oxidative stress also led to a decrease of NAD+, resulting in depletion of both NAD+/NADH coenzymes. The discussed findings provide new insight into the biochemical effects of catalytic anticancer compounds that induce cell death via a redox-mediated mode of action.
Collapse
Affiliation(s)
- Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Ondřej Bárta
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
3
|
Křikavová R, Romanovová M, Jendželovská Z, Majerník M, Masaryk L, Zoufalý P, Milde D, Moncol J, Herchel R, Jendželovský R, Nemec I. Impact of the central atom and halido ligand on the structure, antiproliferative activity and selectivity of half-sandwich Ru(II) and Ir(III) complexes with a 1,3,4-thiadiazole-based ligand. Dalton Trans 2023; 52:12717-12732. [PMID: 37610172 DOI: 10.1039/d3dt01696j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Half-sandwich complexes [Ru(η6-pcym)(L1)X]PF6 (1, 3) and [Ir(η5-Cp*)(L1)X]PF6 (2, 4) featuring a thiadiazole-based ligand L1 (2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-thiadiazole) were synthesized and characterized by varied analytical methods, including single-crystal X-ray diffraction (X = Cl or I, pcym = p-cymene, Cp* = pentamethylcyclopentadienyl). The structures of the molecules were analysed and interpreted using computational methods such as Density Functional Theory (DFT) and Quantum Theory of Atoms in Molecules (QT-AIM). A 1H NMR spectroscopy study showed that complexes 1-3 exhibited hydrolytic stability while 4 underwent partial iodido/chlorido ligand exchange in phosphate-buffered saline. Moreover, 1-4 demonstrated the ability to oxidize NADH (reduced nicotinamide adenine dinucleotide) to NAD+ with Ir(III) complexes 2 and 4 displaying higher catalytic activity compared to their Ru(II) analogues. None of the complexes interacted with reduced glutathione (GSH). Additionally, 1-4 exhibited greater lipophilicity than cisplatin. In vitro biological analyses were performed in healthy cell lines (CCD-18Co colon and CCD-1072Sk foreskin fibroblasts) as well as in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines. The results indicated that Ir(III) complexes 2 and 4 had no effect on human fibroblasts, demonstrating their selectivity. In contrast, complexes 1 and 4 exhibited moderate inhibitory effects on the metabolic and proliferation activities of the cancer cells tested (selectivity index SI > 3.4 for 4 and 2.6 for cisplatin; SI = IC50(A2780)/IC50(CCD-18Co)), including the cisplatin-resistant cancer cell line. Based on these findings, it is possible to emphasize that mainly complex 4 could represent a further step in the development of selective and highly effective anticancer agents, particularly against resistant tumour types.
Collapse
Affiliation(s)
- Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Michaela Romanovová
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Zuzana Jendželovská
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Martin Majerník
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Pavel Zoufalý
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Jan Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Rastislav Jendželovský
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
4
|
Mrkvicová A, Peterová E, Nemec I, Křikavová R, Muthná D, Havelek R, Kazimírová P, Řezáčová M, Štarha P. Rh(III) and Ru(II) complexes with phosphanyl-alkylamines: inhibition of DNA synthesis induced by anticancer Rh complex. Future Med Chem 2023; 15:1583-1602. [PMID: 37750220 DOI: 10.4155/fmc-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: This investigation was designed to synthesize half-sandwich Rh(III) and Ru(II) complexes and study their antiproliferative activity in human cancer cell lines. Materials & methods: Nine compounds were prepared and tested by various assays for their anticancer activity and mechanism of action. Results: Hit Rh(III) complex 6 showed low-micromolar potency in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian carcinoma cell lines, promising selectivity toward these cancer cells over normal lung fibroblasts and an unprecedented mechanism of action in the treated cells. DNA synthesis was decreased and CDKN1A expression was upregulated, but p21 expression was not induced. Conclusion: Rh complex 6 showed high antiproliferative activity, which is induced through a p21-independent mechanism of action.
Collapse
Affiliation(s)
- Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
5
|
Mészáros JP, Kandioller W, Spengler G, Prado-Roller A, Keppler BK, Enyedy ÉA. Half-Sandwich Rhodium Complexes with Releasable N-Donor Monodentate Ligands: Solution Chemical Properties and the Possibility for Acidosis Activation. Pharmaceutics 2023; 15:pharmaceutics15020356. [PMID: 36839678 PMCID: PMC9964319 DOI: 10.3390/pharmaceutics15020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer chemotherapeutics usually have serious side effects. Targeting the special properties of cancer and activation of the anticancer drug in the tumor microenvironment in situ may decrease the intensity of the side effects and improve the efficacy of therapy. In this study, half-sandwich Rh complexes are introduced, which may be activated at the acidic, extracellular pH of the tumor tissue. The synthesis and aqueous stability of mixed-ligand complexes with a general formula of [Rh(η5-Cp*)(N,N/O)(N)]2+/+ are reported, where (N,N/O) indicates bidentate 8-quinolate, ethylenediamine and 1,10-phenanthroline and (N) represents the releasable monodentate ligand with a nitrogen donor atom. UV-visible spectrophotometry, 1H NMR, and pH-potentiometry were used to determine the protonation constants of the monodentate ligands, the proton dissociation constants of the coordinated water molecules in the aqua complexes, and the formation constants of the mixed-ligand complexes. The obtained data were compared to those of the analogous Ru(η6-p-cymene) complexes. The developed mixed-ligand complexes were tested in drug-sensitive and resistant colon cancer cell lines (Colo205 and Colo320, respectively) and in four bacterial strains (Gram-positive and Gram-negative, drug-sensitive, and resistant) at different pH values (5-8). The mixed-ligand complexes with 1-methylimidazole displayed sufficient stability at pH 7.4, and their activation was found in cancer cells with decreasing pH; moreover, the mixed-ligand complexes demonstrated antimicrobial activity in Gram-positive and Gram-negative bacteria, including the resistant MRSA strain. This study proved the viability of incorporating releasable monodentate ligands into mixed-ligand half-sandwich complexes, which is supported by the biological assays.
Collapse
Affiliation(s)
- János P. Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Correspondence: (J.P.M.); (É.A.E.)
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Correspondence: (J.P.M.); (É.A.E.)
| |
Collapse
|
6
|
Abstract
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, numerous rhodium complexes have been recently reported as highly potent antiproliferative agents against various human cancer cells, making them potential alternatives to Pt- and Ru-based metallodrugs. In this review, half-sandwich Rh(III) complexes are overviewed. Many representatives show higher in vitro potency than and different mechanisms of action (MoA) from the conventional anticancer metallodrugs (cisplatin in most cases) or clinically studied Ru drug candidates. Furthermore, some of the reviewed Rh(III) arenyl complexes are also anticancer in vivo. Pioneer anticancer organorhodium compounds as well as the recent advances in the field are discussed properly, and adequate attention is paid to their anticancer activity, solution behaviour and various processes connected with their MoA. In summary, this work summarizes the types of compounds and the most important biological results obtained in the field of anticancer half-sandwich Rh complexes.
Collapse
|
7
|
Zhang WY, Banerjee S, Hughes GM, Bridgewater HE, Song JI, Breeze BG, Clarkson GJ, Coverdale JPC, Sanchez-Cano C, Ponte F, Sicilia E, Sadler PJ. Ligand-centred redox activation of inert organoiridium anticancer catalysts. Chem Sci 2020; 11:5466-5480. [PMID: 34094073 PMCID: PMC8159363 DOI: 10.1039/d0sc00897d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(iii) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS- attack on the azo bond facilitates the substitution of iodide by GS-, and leads to formation of GSSG and superoxide if O2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.
Collapse
Affiliation(s)
- Wen-Ying Zhang
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Samya Banerjee
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - George M Hughes
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Ji-Inn Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Ben G Breeze
- Spectroscopy Research Technology Platform, University of Warwick Coventry CV4 7AL UK
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria via Pietro Bucci 87036 Arcavacata di Rende Cs Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria via Pietro Bucci 87036 Arcavacata di Rende Cs Italy
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
8
|
Moustafa ME, Boyle PD, Puddephatt RJ. Photoswitchable organoplatinum complexes with an azobenzene derivative of di-2-pyridylamine. NEW J CHEM 2020. [DOI: 10.1039/c9nj05313a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential for the platinum complexes of an azobenzene substituted dipyridylamine ligand in photodynamic therapy is explored.
Collapse
Affiliation(s)
| | - Paul D. Boyle
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | |
Collapse
|
9
|
|
10
|
Lord RM, McGowan PC. Organometallic Iridium Arene Compounds: The Effects of C-Donor Ligands on Anticancer Activity. CHEM LETT 2019; 48:916-924. [DOI: 10.1246/cl.190179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Rianne M. Lord
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, U.K
| | | |
Collapse
|
11
|
Ribeiro GH, Colina-Vegas L, Clavijo JC, Ellena J, Cominetti MR, Batista AA. Ru(II)/N-N/PPh3 complexes as potential anticancer agents against MDA-MB-231 cancer cells (N-N = diimine or diamine). J Inorg Biochem 2019; 193:70-83. [DOI: 10.1016/j.jinorgbio.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/27/2023]
|