1
|
Haribabu J, Madhavan G, Swaminathan S, Panneerselvam M, Moraga D, Dasararaju G, Echeverria C, Arulraj A, Mangalaraja RV, Kokkarachedu V, Santibanez JF, Ramirez-Tagle R. Multifaceted exploration of acylthiourea compounds: In vitro cytotoxicity, DFT calculations, molecular docking and dynamics simulation studies. Int J Biol Macromol 2024; 278:134870. [PMID: 39173802 DOI: 10.1016/j.ijbiomac.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, 1H/13C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.
Collapse
Affiliation(s)
- Jebiti Haribabu
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - Geetha Madhavan
- Chennai Institute of Technology (CIT), Chennai 600069, Tamil Nadu, India
| | - Srividya Swaminathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Daniel Moraga
- Laboratorio de Fisiología, Departamento de Ciencias Biomédicas, Facultad de Medicina Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Cesar Echeverria
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa-7800002, Santiago, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago, Chile; Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Varaprasad Kokkarachedu
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rodrigo Ramirez-Tagle
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| |
Collapse
|
2
|
Zahra U, Saeed A, Abdul Fattah T, Flörke U, Erben MF. Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC Adv 2022; 12:12710-12745. [PMID: 35496330 PMCID: PMC9041296 DOI: 10.1039/d2ra01781d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
The interest in acyl thioureas has continually been escalating owing to their extensive applications in diverse fields, such as synthetic precursors of new heterocycles, pharmacological and materials science, and technology. These scaffolds exhibit a wide variety of biological activities such as antitumor, enzyme inhibitory, anti-bacterial, anti-fungal, and anti-malarial activities and find utilization as chemosensors, adhesives, flame retardants, thermal stabilizers, antioxidants, polymers and organocatalysts. In addition, the synthesis, and applications of coordination complexes of these ligands have also been overviewed. The current review is a continuation of our previous efforts in this area, focusing on the recent advancements during the period 2017 to present. This review encapsulates the recently designed acyl thioureas, and their crystal structures, metal complexes and various applications from 2017 to present, including pharmacological aspects, chemosensing and heterogenous catalysis.![]()
Collapse
Affiliation(s)
- Urage Zahra
- Department of Chemistry, Quaid-i-Azam University-45320 Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University-45320 Islamabad Pakistan
| | | | - Ulrich Flörke
- Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn Warburgerstrasse 100 D-33098 Paderborn Germany
| | - Mauricio F Erben
- CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata Bv. 120 1465 La Plata 1900 Argentina
| |
Collapse
|
3
|
N E ASWATHIRAVINDRAN, Sindhuja D, Bhuvanesh N, Karvembu R. Synthesis of 1,2‐disubstituted benzimidazoles via acceptorless dehydrogenative coupling using Ru(II)‐arene catalysts containing ferrocene thiosemicarbazone. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- ASWATHI RAVINDRAN N E
- National Institute of Technology Tiruchirappalli Chemistry 620015 Tiruchirappalli INDIA
| | | | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University Chemistry INDIA
| | - R Karvembu
- National Institute of Technology Department of Chemistry Tanjore Road 620015 Tiruchirappalli INDIA
| |
Collapse
|
4
|
Yadav S, Vijayan P, Gupta R. Ruthenium complexes of N/O/S based multidentate ligands: Structural diversities and catalysis perspectives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
A new Schiff base containing 5-FU and its metal Complexes: Synthesis, Characterization, and biological activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Ruthenium−p-cymene complexes with acylthiourea, and its heterogenized form on graphene oxide act as catalysts for the synthesis of quinoxaline derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Swaminathan S, Haribabu J, Kalagatur NK, Nikhil M, Balakrishnan N, Bhuvanesh NSP, Kadirvelu K, Kolandaivel P, Karvembu R. Tunable Anticancer Activity of Furoylthiourea-Based Ru II -Arene Complexes and Their Mechanism of Action. Chemistry 2021; 27:7418-7433. [PMID: 33404126 DOI: 10.1002/chem.202004954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Naveen Kumar Kalagatur
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Maroli Nikhil
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
8
|
Xi ZW, Yang L, Wang DY, Feng CW, Qin Y, Shen YM, Pu C, Peng X. Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots. J Org Chem 2021; 86:2474-2488. [PMID: 33415975 DOI: 10.1021/acs.joc.0c02627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an efficient and versatile visible light-driven methodology to transform aryl aldehydes and ketones chemoselectively either to alcohols or to pinacol products with CdSe/CdS core/shell quantum dots as photocatalysts. Thiophenols were used as proton and hydrogen atom donors and as hole traps for the excited quantum dots (QDs) in these reactions. The two products can be switched from one to the other simply by changing the amount of thiophenol in the reaction system. The core/shell QD catalysts are highly efficient with a turn over number (TON) larger than 4 × 104 and 4 × 105 for the reduction to alcohol and pinacol formation, respectively, and are very stable so that they can be recycled for at least 10 times in the reactions without significant loss of catalytic activity. The additional advantages of this method include good functional group tolerance, mild reaction conditions, the allowance of selectively reducing aldehydes in the presence of ketones, and easiness for large scale reactions. Reaction mechanisms were studied by quenching experiments and a radical capture experiment, and the reasons for the switchover of the reaction pathways upon the change of reaction conditions are provided.
Collapse
Affiliation(s)
- Zi-Wei Xi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Lei Yang
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dan-Yan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Chuan-Wei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yufeng Qin
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, PR China
| | - Yong-Miao Shen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Chaodan Pu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, PR China
| | - Xiaogang Peng
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| |
Collapse
|
9
|
Pachisia S, Kishan R, Yadav S, Gupta R. Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorg Chem 2021; 60:2009-2022. [PMID: 33459009 DOI: 10.1021/acs.inorgchem.0c03505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present synthesis and characterization of two half-sandwich Ru(II) complexes supported with amide-phosphine based ligands. These complexes presented a pyridine-2,6-dicarboxamide based pincer cavity, decorated with hydrogen bonds, that participated in the binding of nitro-substrates closer to the Ru(II) centers, which is further supported with binding and docking studies. These ruthenium complexes functioned as the noteworthy catalysts for the borohydride mediated reduction of assorted nitro-substrates. Mechanistic studies not only confirmed the intermediacy of [Ru-H] in the reduction but also asserted the involvement of several organic intermediates during the course of the catalysis. A similar Ru(II) complex that lacked pyridine-2,6-dicarboxamide based pincer cavity substantiated its unique role both in the substrate binding and the subsequent catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Kishan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Samanta Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
10
|
Jerome P, Haribabu J, Bhuvanesh NSP, Karvembu R. Pd(II)‐NNN Pincer Complexes for Catalyzing Transfer Hydrogenation of Ketones. ChemistrySelect 2020. [DOI: 10.1002/slct.202003634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peter Jerome
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Jebiti Haribabu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | | | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
11
|
Bao L, Yu Z, Fei T, Yan Z, Li J, Sun C, Pang S. Palladium supported on metal–organic framework as a catalyst for the hydrogenation of nitroarenes under mild conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lingxiang Bao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zongbao Yu
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Teng Fei
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zhiyuan Yan
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jiazhe Li
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Chenghui Sun
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Key Laboratory for Ministry of Education of High Energy Density MaterialsBeijing Institute of Technology Beijing 100081 China
| | - Siping Pang
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Key Laboratory for Ministry of Education of High Energy Density MaterialsBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
12
|
Buldurun K, Özdemir M. Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Sathishkumar PN, Prabha PS, Bhuvanesh NS, Karvembu R. Tuning acylthiourea ligands in Ru(II) catalysts for altering the reactivity and chemoselectivity of transfer hydrogenation reactions, and synthesis of 3-isopropoxy-1H-indole through a new synthetic approach. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Vasanthakumar P, Sindhuja D, Senthil Raja D, Lin CH, Karvembu R. Iron and chromium MOFs as sustainable catalysts for transfer hydrogenation of carbonyl compounds and biomass conversions. NEW J CHEM 2020. [DOI: 10.1039/d0nj00552e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe and Cr based MOFs (MIL-88B) act as efficient and reusable catalysts for transfer hydrogenation of carbonyl compounds including bio-derived substrates.
Collapse
Affiliation(s)
| | | | | | - Chia-Her Lin
- Department of Chemistry
- Chung Yuan Christian University
- Chung Li
- Taoyuan 32023
- Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| |
Collapse
|
15
|
Sindhuja D, Vasanthakumar P, Bhuvanesh N, Karvembu R. Catalytic Assessment of Copper(I) Complexes and a Polymer Analog towards the One‐Pot Synthesis of Imines and Quinoxalines. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dharmalingam Sindhuja
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | | | | | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
16
|
Satheesh C, Sathish Kumar PN, Kumara PR, Karvembu R, Hosamani A, Nethaji M. Half‐sandwich Ru (II) complexes containing (N, O) Schiff base ligands: Catalysts for base‐free transfer hydrogenation of ketones. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- C.E. Satheesh
- Department of Chemistry, UCSTumkur University Tumakuru 572103 Karnataka India
| | | | | | - Ramasamy Karvembu
- Department of ChemistryNational Institute of Technology Tiruchirappalli Tamilanadu India
| | - Amar Hosamani
- Solid State and Structural Chemistry UnitIndian Institute of Science Bangalore 560012 Karnataka India
| | - M. Nethaji
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|