1
|
Sariga, Varghese A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Cham) 2023; 381:32. [PMID: 37910233 DOI: 10.1007/s41061-023-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.
Collapse
Affiliation(s)
- Sariga
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
2
|
Roy N, Kannabiran K, Mukherjee A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. CHEMOSPHERE 2023; 333:138912. [PMID: 37182714 DOI: 10.1016/j.chemosphere.2023.138912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Ferrocene functionalized rGO-ZnO nanocomposite was synthesized via the facile hydrothermal method. ZnO was reduced over the 3-dimensional rGO framework (3D-Fc@rGO) using Camellia sinensis extract. The Fc@rGO-ZnO nanocomposite was employed for pharmaceutical degradation (sulfamethoxazole (SMX) and ciprofloxacin (CIP)) in an aqueous solution under UV C light. The physicochemical properties of the as-prepared photocatalyst were characterized using FTIR, XRD, FESEM, EDS mapping, HR-TEM, XPS, and DR-UV Vis. The as-synthesized Fc@rGO-ZnO photocatalyst performed remarkably against pristine ZnO, with a fivefold increase in removal efficiency. This superior activity was attributed to its improved light harvesting, charge carrier interface, and enhanced charge separation. Additionally, the photocatalyst obeyed the Lagergen model for pseudo-first-order kinetics. Congruously, the integrated approach of Fc@rGO and ZnO as oxidizing agents was proficient in removing >95% of antibiotics (CIP and SMX) within 180 min. Furthermore, the heterostructure configuration developed between Fc@rGO and ZnO helps in charge migration and generation of abundant •OH and •O2- radicals for photodegradation activities. The toxicity assessment of the treated solutions showed improved cell viability in the algal strains of Scenedesmus and Chlorella sp. Moreover, this novel approach for the synthesis of a photoactive nanocomposite is found to be low-cost and reusable for three cycles. The nanocomposite is environmentally sustainable paving the way for practical applications in the treatment of different classes of antibiotics.
Collapse
Affiliation(s)
- Namrata Roy
- Centre for Nanobiotechnology, VIT, Vellore, India; School of Biosciences and Technology, VIT, India
| | | | | |
Collapse
|
3
|
Boateng E, Thiruppathi AR, Hung CK, Chow D, Sridhar D, Chen A. Functionalization of Graphene-based Nanomaterials for Energy and Hydrogen Storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Sarmet J, Leroux F, Taviot-Gueho C, Gerlach P, Douard C, Brousse T, Toussaint G, Stevens P. Interleaved Electroactive Molecules into LDH Working on Both Electrodes of an Aqueous Battery-Type Device. Molecules 2023; 28:molecules28031006. [PMID: 36770682 PMCID: PMC9920818 DOI: 10.3390/molecules28031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
By selecting two electroactive species immobilized in a layered double hydroxide backbone (LDH) host, one able to act as a positive electrode material and the other as a negative one, it was possible to match their capacity to design an innovative energy storage device. Each electrode material is based on electroactive species, riboflavin phosphate (RF) on one side and ferrocene carboxylate (FCm) on the other, both interleaved into a layered double hydroxide (LDH) host structure to avoid any possible molecule migration and instability. The intercalation of the electroactive guest molecules is demonstrated by X-ray diffraction with the observation of an interlayer LDH spacing of about 2 nm in each case. When successfully hosted into LDH interlayer space, the electrochemical behavior of each hybrid assembly was scrutinized separately in aqueous electrolyte to characterize the redox reaction occurring upon cycling and found to be a rapid faradic type. Both electrode materials were placed face to face to achieve a new aqueous battery (16C rate) that provides a first cycle-capacity of about 7 mAh per gram of working electrode material LDH/FCm at 10 mV/s over a voltage window of 2.2 V in 1M sodium acetate, thus validating the hybrid LDH host approach on both electrode materials even if the cyclability of the assembly has not yet been met.
Collapse
Affiliation(s)
- Julien Sarmet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Fabrice Leroux
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
- Correspondence:
| | - Christine Taviot-Gueho
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Patrick Gerlach
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinière BP32229, CEDEX 3, F-44322 Nantes, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
| | - Camille Douard
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinière BP32229, CEDEX 3, F-44322 Nantes, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
| | - Thierry Brousse
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinière BP32229, CEDEX 3, F-44322 Nantes, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
| | - Gwenaëlle Toussaint
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
- EDF R&D, Department LME, Avenue des Renardières, CEDEX, F-77818 Moret-sur-Loing, France
| | - Philippe Stevens
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
- EDF R&D, Department LME, Avenue des Renardières, CEDEX, F-77818 Moret-sur-Loing, France
| |
Collapse
|
5
|
El-Maghrabi N, Fawzy M, Mahmoud AED. Efficient Removal of Phosphate from Wastewater by a Novel Phyto-Graphene Composite Derived from Palm Byproducts. ACS OMEGA 2022; 7:45386-45402. [PMID: 36530337 PMCID: PMC9753538 DOI: 10.1021/acsomega.2c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 05/17/2023]
Abstract
The increased demand for clean water especially in overpopulated countries is of great concern; thus, the development of eco-friendly and cost-effective techniques and materials that can remediate polluted water for possible reuse in agricultural purposes can offer a life-saving solution to improve human welfare, especially in view of climate change impacts. In the current study, the agricultural byproducts of palm trees have been used for the first time as a carbon source to produce graphene functionalized with ferrocene in a composite form to enhance its water treatment potential. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), ultraviolet-visible, Fourier transform infrared spectroscopy, zeta potential, thermogravimetric analysis, and Raman techniques have been used to characterize the produced materials. SEM investigations confirmed the formation of multiple sheets of the graphene composite. Data collected from the zeta potential revealed that graphene was supported with a negative surface charge that maintains its stability while XRD elucidated that graphene characteristic peaks were evident at 2θ = 22.4 and 22.08° using palm leaves and fibers, respectively. Batch adsorption experiments were conducted to find out the most suitable conditions to remove PO4 3- from wastewater by applying different parameters, including pH, adsorbent dose, initial concentration, and time. Their effect on the adsorption process was also investigated. Results demonstrated that the best adsorption capacity was 58.93 mg/g (removal percentage: 78.57%) using graphene derived from palm fibers at 15 mg L-1 initial concentration, pH = 3, dose = 10 mg, and 60 min contact time. Both linear and non-linear forms of kinetic and isotherm models were investigated. The adsorption process obeyed the pseudo-second-order kinetic model and was well fitted to the Langmuir isotherm.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- ,
| | - Manal Fawzy
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- National
Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo11694, Egypt
| | - Alaa El Din Mahmoud
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
| |
Collapse
|
6
|
Payami E, Keynezhad MA, Safa KD, Teimuri-Mofrad R. Development of high-performance supercapacitor based on Fe3O4@SiO2@PolyFc nanoparticles via surface-initiated radical polymerization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Synthesis of ferrocenyl based β-hydroxy-1,2,3- triazoles and study of electrochemical properties via click reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B Biointerfaces 2022; 212:112356. [PMID: 35123193 DOI: 10.1016/j.colsurfb.2022.112356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Iqbal
- Department of Electrical Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
9
|
Teimuri‐Mofrad R, Payami E, Piriniya A, Hadi R. Green synthesis of ferrocenyl‐modified MnO
2
/Carbon‐based nanocomposite as an outstanding supercapacitor electrode material. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Ayda Piriniya
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
10
|
Liu Y, Li M, Lei B, Wu M, Zhan J. Facile assembly of amorphous Fe 2O 3 nanoparticle@dry graphene oxide composites for lithium-ion storage. NEW J CHEM 2022. [DOI: 10.1039/d2nj01052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lithium-ion storage capacity of dGO is increased by about 158% after low-temperature am-Fe2O3 modification.
Collapse
Affiliation(s)
- Ya Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Minyue Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Bo Lei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jing Zhan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
11
|
Payami E, Teimuri‐Mofrad R. CNT‐containing redox active nanohybrid: a promising ferrocenyl‐based electrode material for outstanding energy storage application. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
12
|
|
13
|
Fabrication of bisferrocenyl derivative grafted HTPB with high iron content and its application in dopamine detection. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Sviridova E, Li M, Barras A, Addad A, Yusubov MS, Zhdankin VV, Yoshimura A, Szunerits S, Postnikov PS, Boukherroub R. Aryne cycloaddition reaction as a facile and mild modification method for design of electrode materials for high-performance symmetric supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
|
16
|
A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Composites and Copolymers Containing Redox-Active Molecules and Intrinsically Conducting Polymers as Active Masses for Supercapacitor Electrodes—An Introduction. Polymers (Basel) 2020; 12:polym12081835. [PMID: 32824366 PMCID: PMC7464255 DOI: 10.3390/polym12081835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023] Open
Abstract
In this introductory report, composites and copolymers combining intrinsically conducting polymers and redox-active organic molecules, suggested as active masses without additional binder and conducting agents for supercapacitor electrodes, possibly using the advantageous properties of both constituents, are presented. A brief overview of the few reported examples of the use of such copolymers, composites, and comparable combinations of organic molecules and carbon supports is given. For comparison a few related reports on similar materials without intrinsically conducting polymers are included.
Collapse
|
18
|
Hadi R, Rahimpour K, Payami E, Teimuri‐Mofrad R. Design and green synthesis of 1‐(4‐ferrocenylbutyl)piperazine chemically grafted reduced graphene oxide for supercapacitor application. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
19
|
Miao Q, Rouhani F, Moghanni‐Bavil‐Olyaei H, Liu K, Gao X, Li J, Hu X, Jin Z, Hu M, Morsali A. Comparative Study of the Supercapacitive Performance of Three Ferrocene‐Based Structures: Targeted Design of a Conductive Ferrocene‐Functionalized Coordination Polymer as a Supercapacitor Electrode. Chemistry 2020; 26:9518-9526. [DOI: 10.1002/chem.202001109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/06/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Qian Miao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 P.R. China
| | - Farzaneh Rouhani
- Department of ChemistryFaculty of SciencesTarbiat Modares University P.O. Box 14115-175 Tehran +98 Iran
| | | | - Kuan‐Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical EngineeringNingxia University Yin-Chuan 750021 P.R. China
| | - Xue‐Mei Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical EngineeringNingxia University Yin-Chuan 750021 P.R. China
| | - Jing‐Zhe Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical EngineeringNingxia University Yin-Chuan 750021 P.R. China
| | - Xiu‐De Hu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical EngineeringNingxia University Yin-Chuan 750021 P.R. China
| | - Zhi‐Min Jin
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 P.R. China
| | - Mao‐Lin Hu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 P.R. China
| | - Ali Morsali
- Department of ChemistryFaculty of SciencesTarbiat Modares University P.O. Box 14115-175 Tehran +98 Iran
| |
Collapse
|
20
|
Rahimpour K, Shafagh‐Azar A, Abbasi H, Mohammad‐Gholizadeh A, Hezarkhani Z, Teimuri‐Mofrad R. 2‐[(4‐Aminobutyl)ferrocenylmethylidene]‐5,6‐dimethoxy‐1‐indanone derivatives: Synthesis, characterization, and investigation of electro‐optical properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Ali Shafagh‐Azar
- Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Hassan Abbasi
- Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | | | - Zeinab Hezarkhani
- Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| |
Collapse
|
21
|
Rahimpour K, Teimuri-Mofrad R. Novel hybrid supercapacitor based on ferrocenyl modified graphene quantum dot and polypyrrole nanocomposite. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136207] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Payami E, Ahadzadeh I, Mohammadi R, Teimuri-Mofrad R. Design and synthesis of novel binuclear ferrocenyl-intercalated graphene oxide and polyaniline nanocomposite for supercapacitor applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Hadi R, Abbasi H, Payami E, Ahadzadeh I, Teimuri‐Mofrad R. Synthesis, Characterization and Electrochemical Properties of 4‐Azidobutylferrocene‐Grafted Reduced Graphene Oxide‐Polyaniline Nanocomposite for Supercapacitor Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Hassan Abbasi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Iraj Ahadzadeh
- Department of Physical Chemistry Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| |
Collapse
|
24
|
Teimuri-Mofrad R, Hadi R, Abbasi H, Payami E, Neshad S. Green synthesis of carbon nanotubes@tetraferrocenylporphyrin/copper nanohybrid and evaluation of its ability as a supercapacitor. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Synthesis, characterization and electrochemical evaluation of a novel high performance GO-Fc/PANI nanocomposite for supercapacitor applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134706] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
|
27
|
Teimuri-Mofrad R, Abbasi H, Hadi R. Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|