1
|
Inoue R, Sumitani R, Honda H, Kuwahara D, Goo ZL, Sugimoto K, Mochida T. Organometallic Ionic Plastic Crystals Incorporating Cationic Half-Sandwich Complexes. Inorg Chem 2024; 63:14770-14778. [PMID: 39056552 DOI: 10.1021/acs.inorgchem.4c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ionic plastic crystals (IPCs), characterized by nearly spherical molecular ions, exhibit remarkable solid-state characteristics including high ionic conductivity. However, most IPCs are organic onium salts. Incorporating organometallic half-sandwich complexes into IPCs is challenging owing to their low-symmetry structures. This paper introduces a novel series of IPCs composed of salts derived from half-sandwich organometallic complexes. We synthesized five salts of [Ru(Cp)(tmeda)(CO)]X (tmeda = N,N,N',N'-tetramethyl-1,2-ethanediamine, X = anion) with different anions and examined their phase behavior, crystal structures, and molecular motion in the solid-state. Salts featuring the CPFSA (= 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide), B(CN)4-, and FSA- (= (FSO2)2N-) anions underwent phase transitions to an IPC phase with a CsCl-type structure in the temperature range of 327-364 K. Employing smaller anions led to an increase in the transition temperature. In each salt, the coordination number, representing the number of anions surrounding one cation, remained eight in IPC and low-temperature phases. However, salts containing smaller anions (CF3BF3- and PF6-) displayed a rotator phase rather than the IPC phase. In these cases, the coordination numbers were six at low temperatures.
Collapse
Affiliation(s)
- Ryota Inoue
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hisashi Honda
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Daisuke Kuwahara
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Zi Lang Goo
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kunihisa Sugimoto
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
2
|
Das S, Mondal A, Reddy CM. Harnessing molecular rotations in plastic crystals: a holistic view for crystal engineering of adaptive soft materials. Chem Soc Rev 2020; 49:8878-8896. [PMID: 33185234 DOI: 10.1039/d0cs00475h] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastic crystals (PCs), formed by certain types of molecules or ions with reorientational freedom, offer both exceptional mechanical plasticity and long range order, hence they are attractive for many mechano-adaptable technologies. While most classic PCs belong to simple globular molecular systems, a vast number of examples in the literature with diverse geometrical (cylindrical, bent, disk, etc.) and chemical (neutral, ionic, etc.) natures have proven their wide scope and opportunities. All the recent reviews on PCs aim to provide insights into a particular application, for instance, organic plastic crystal electrolytes or ferroelectrics. This tutorial review presents a holistic view of PCs by unifying the recent excellent progress in fundamental concepts from diverse areas as well as comparing them with liquid crystals, amphidynamic crystals, ordered crystals, etc. We cover the molecular and structural origins of the unique characteristics of PCs, such as exceptional plasticity, facile reversible switching of order-to-disorder states and associated colossal heat changes, and diffusion of ions/molecules, and their attractive applications in solid electrolytes, opto-electronics, ferroeletrics, piezoelectrics, pyroelectrics, barocalorics, magnetics, nonlinear optics, and so on. The recent progress not only demonstrates the diversity of scientific areas in which PCs are gaining attention but also the opportunities one can exploit using a crystal engineering approach, for example, the design of novel dynamic functional soft materials for future use in flexible devices or soft-robotic machines.
Collapse
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, 741246, Nadia, West Bengal, India.
| | | | | |
Collapse
|