1
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Zhang L, Long S, Jiao H, Liu Z, Zhang P, Lei A, Gong W, Pei X. Cellulose derived Pd nano-catalyst for efficient catalysis. RSC Adv 2022; 12:18676-18684. [PMID: 35873326 PMCID: PMC9231465 DOI: 10.1039/d2ra02799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Using green, environmentally friendly and resource-rich cellulose as a raw material, a ligand-free and highly dispersed palladium (Pd) nano-catalyst was successfully prepared in a facile way. A variety of characterization results showed that the Pd nanoparticles (NPs) were uniformly spread on the cellulose nanoporous microspheres, with an average particle size of ∼2.75 nm. As a carrier, cellulose microspheres with nanoporous structure and rich -OH groups greatly promoted the attachment and distribution of the highly dispersed Pd NPs, along with the diffusion and exchange of reactants, so as to greatly promote the catalytic activity. In the Suzuki-Miyaura coupling reaction, the catalyst of C-Pd exhibited excellent catalytic activity (TOF up to 2126 h-1), broad applicability, and good recyclability with almost no active loss in 6 continuous runs. This utilizing of bioresources to build catalyst materials is important for sustainable chemistry.
Collapse
Affiliation(s)
- Lingyu Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Siyu Long
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Huibin Jiao
- School of Materials Science and Engineering, Guizhou Minzu University Guiyang 550025 China
| | - Zhuoyue Liu
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Ping Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
3
|
Jin SH, Ko W, Lee S, Hwang YJ. Combining flow synthesis and heterogeneous catalysis for the preparation of conjugated polymers. Polym Chem 2022. [DOI: 10.1039/d2py00362g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first successful synthesis of a conjugated polymer using a heterogeneous palladium catalyst in a flow system. The resulting polymer with an Mn of 13.6 kDa and high reproducibility shows the great potential of this system.
Collapse
Affiliation(s)
- Seung-Hwan Jin
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Wonyoung Ko
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Seungjun Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Ye-Jin Hwang
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
4
|
Kuchkina NV, Sorokina SA, Bykov AV, Sulman MG, Bronstein LM, Shifrina ZB. Magnetically Recoverable Nanoparticulate Catalysts for Cross-Coupling Reactions: The Dendritic Support Influences the Catalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3345. [PMID: 34947694 PMCID: PMC8708486 DOI: 10.3390/nano11123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Carbon-carbon cross-coupling reactions are among the most important synthetic tools for the preparation of pharmaceuticals and bioactive compounds. However, these reactions are normally carried out using copper, phosphines, and/or amines, which are poisonous for pharmaceuticals. The use of nanocomposite catalysts holds promise for facilitating these reactions and making them more environmentally friendly. In the present work, the PEGylated (PEG stands for poly(ethylene glycol) pyridylphenylene dendrons immobilized on silica loaded with magnetic nanoparticles have been successfully employed for the stabilization of Pd2+ complexes and Pd nanoparticles. The catalyst developed showed excellent catalytic activity in copper-free Sonogashira and Heck cross-coupling reactions. The reactions proceeded smoothly in green solvents at low palladium loading, resulting in high yields of cross-coupling products (from 80% to 97%) within short reaction times. The presence of magnetic nanoparticles allows easy magnetic separation for repeated use without a noticeable decrease of catalytic activity due to the strong stabilization of Pd species by rigid and bulky dendritic ligands. The PEG dendron periphery makes the catalyst hydrophilic and better suited for green solvents. The minor drop in activity upon the catalyst reuse is explained by the formation of Pd nanoparticles from the Pd2+ species during the catalytic reaction. The magnetic separation and reuse of the nanocomposite catalyst reduces the cost of target products as well as energy and material consumption and diminishes residual contamination by the catalyst. These factors as well as the absence of copper in the catalyst makeup pave the way for future applications of such catalysts in cross-coupling reactions.
Collapse
Affiliation(s)
- Nina V. Kuchkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Svetlana A. Sorokina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Alexey V. Bykov
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Mikhail G. Sulman
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| |
Collapse
|
5
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
6
|
Lu F. Ligand-free, copper-free Sonogashira reaction and styrene hydrogenation catalyzed by 1-dodecanethiolate stabilized palladium nanoparticles. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1974011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Feng Lu
- Greenland Tech LLC, Irvine, CA, USA
| |
Collapse
|
7
|
Shaikh N, Pamidimukkala P. Magnetic chitosan stabilized palladium nanostructures: Potential catalysts for aqueous Suzuki coupling reactions. Int J Biol Macromol 2021; 183:1560-1573. [PMID: 34022317 DOI: 10.1016/j.ijbiomac.2021.05.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 02/05/2023]
Abstract
This work describes the preparation of palladium-based catalyst supported on magnetic chitosan (Pd@IO-Chitosan) for Suzuki Miyaura C-C coupling reaction. The Pd@IO-Chitosan catalyst was characterized using different spectroscopic and microscopic techniques such as Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), X-ray Absorption Near Edge Structure (XANES) Spectroscopy and X-ray photoelectron spectroscopy (XPS). Pd@IO-Chitosan was further analysed by thermogravimetric analysis (TGA) in order to determine its thermal behavior. The catalyst comprised Pd, PdO species stabilised by chitosan that facilitated Suzuki coupling reactions. Palladium loading as low as 0.0055 mol% was found to be effective for aqueous Suzuki cross-couplings with excellent yields of over 99%. The catalyst could be recycled and reused at least 12 times with no significant decrease in its catalytic activity.
Collapse
Affiliation(s)
- Naznin Shaikh
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Sayajigunj, Vadodara 390002, India
| | - Padmaja Pamidimukkala
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Sayajigunj, Vadodara 390002, India.
| |
Collapse
|
8
|
Johnson M, Gaffney C, White V, Bechelli J, Balaraman R, Trad T. Non-hydrolytic synthesis of caprylate capped cobalt ferrite nanoparticles and their application against Erwinia carotovora and Stenotrophomonas maltophilia. J Mater Chem B 2020; 8:10845-10853. [PMID: 33180891 DOI: 10.1039/d0tb02283g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Magnetic cobalt Ferrite nanoparticles capped with caprylate groups, CH3(CH2)6CO2-, have been synthesized using a novel non-hydrolytic coprecipitation method under inert conditions. Particle diameter was characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The spinel ferrite crystal phase was verified using X-ray diffraction (XRD), and the presence of the capping agent was confirmed using Fourier Transform Infrared spectroscopy (FTIR). Bactericidal effects of the particles were tested against broth cultures of Erwinia carotovora and Stenotrophomonas maltophilia. The final particles had an average diameter of 3.81 nm and readily responded to a neodymium magnet. The particles did have a significant effect on the OD600 of both broth cultures.
Collapse
Affiliation(s)
- Morgan Johnson
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77340, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Baran T, Sargin I. Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation. Int J Biol Macromol 2020; 155:814-822. [DOI: 10.1016/j.ijbiomac.2020.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022]
|
10
|
De Cattelle A, Billen A, Brullot W, Verbiest T, Koeckelberghs G. Plasmonic heating using an easily recyclable Pd‐functionalized Fe
3
O
4
/Au core‐shell nanoparticle catalyst for the Suzuki and Sonogashira reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amaury De Cattelle
- Department of ChemistryLaboratory for Polymer Synthesis KU Leuven, Celestijnenlaan 200F B‐3001 Heverlee Belgium
| | - Arne Billen
- Department of ChemistryLaboratory for Molecular Electronics and Photonics KU Leuven, Celestijnenlaan 200D B‐3001 Heverlee Belgium
| | - Ward Brullot
- Department of ChemistryLaboratory for Molecular Electronics and Photonics KU Leuven, Celestijnenlaan 200D B‐3001 Heverlee Belgium
| | - Thierry Verbiest
- Department of ChemistryLaboratory for Molecular Electronics and Photonics KU Leuven, Celestijnenlaan 200D B‐3001 Heverlee Belgium
| | - Guy Koeckelberghs
- Department of ChemistryLaboratory for Polymer Synthesis KU Leuven, Celestijnenlaan 200F B‐3001 Heverlee Belgium
| |
Collapse
|
11
|
De Cattelle A, Billen A, Brullot W, Verbiest T, Koeckelberghs G. Synthesis of Poly(phenylene ethynylene) Using an Easily Recyclable Pd-Functionalized Magnetite Nanoparticle Catalyst. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amaury De Cattelle
- Laboratory for Polymer Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Arne Billen
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Ward Brullot
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Thierry Verbiest
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|