1
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Rafikova K, Meriç N, Binbay NE, Okumuş V, Erdem K, Belyankova Y, Tursynbek S, Dauletbakov A, Bayazit S, Zolotareva D, Yerassyl K, Güzel R, Ocak YS, Aydemir M. Well designed iridium-phosphinite complexes: Biological assays, electrochemical behavior and density functional theory calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124448. [PMID: 38763019 DOI: 10.1016/j.saa.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Mononuclear phosphinite Iridium complexes based on ferrocene group have been prepared and characterized by various spectroscopic techniques. The complexes were subjected to cyclic voltammetry studies in order to determine the energies of HOMO and LUMO levels and to estimate their electrochemical and some electronic properties. Organic complex-based memory substrates were immobilized using TiO2-modified ITO electrodes, and the memory functions of phosphinite-based organic complexes were verified by chronoamperometry (CA) and open-circuit potential amperometry (OCPA). Extensive theoretical and experimental investigations were directed to gain a more profound understanding of the chemical descriptors and the diverse electronic transitions taking place within the iridium complexes, as well as their electrochemical characteristics. The quantum chemical calculations were carried out for the iridium complexes at the DFT/CAM-B3LYP level of theory in the gas phase. Furthermore, the antioxidant, antimicrobial, DNA binding, and DNA cleavage activities of the complexes were tested. Complex 2 exhibited the highest radical scavenging activity (67.5 ± 2.24 %) at 200.0 mg/L concentration. It was observed that the complexes formed an inhibition zone in the range of 8-15 mm against Gram + bacteria and in the range of 0-13 mm against Gram - bacteria. The agarose gel electrophoresis method was used to determine the DNA binding and DNA cleavage activities of the complexes. All of the tested complexes had DNA binding activity; however, complexes 1, 2, and 8 showed better binding activity than the others.
Collapse
Affiliation(s)
- Khadichakhan Rafikova
- Satbayev University, Institute of Chemical and Biological Technologies, Almaty, Kazakhstan; Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Nermin Meriç
- Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir, Turkey; Dicle University, Technical Vocational School, Department of Hair Care and Beauty Services, 21280 Diyarbakir, Turkey.
| | - Nil Ertekin Binbay
- Dicle University, Technical Vocational School, Department of Electronics, 21280 Diyarbakir, Turkey
| | - Veysi Okumuş
- Siirt University, Faculty of Medicine, Department of Medical Biology, 56100 Siirt, Turkey
| | - Kemal Erdem
- Siirt University, Instution of Science, Department of Biology, Siirt 56100, Turkey
| | - Yelizaveta Belyankova
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Saniya Tursynbek
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Anuar Dauletbakov
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Sarah Bayazit
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Darya Zolotareva
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Kamshyger Yerassyl
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Remziye Güzel
- Dicle University, Faculty of Education, Department of Science, Diyarbakir 21280, Turkey
| | - Yusuf Selim Ocak
- Institute of Nanotechnology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Murat Aydemir
- Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir, Turkey.
| |
Collapse
|
3
|
Arar W, Ali RB, El May MV, Khatyr A, Jourdain I, Knorr M, Brieger L, Scheel R, Strohmann C, Chaker A, Akacha AB. Synthesis, crystal structures and biological activities of halogeno-(O-alkylphenylcarbamothioate)bis(triarylphosphine)copper(I) complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Bis(μ-iodo)-tetrakis(O-methyl N-phenylthiocarbamate)-tetraiodo-dibismuth. MOLBANK 2022. [DOI: 10.3390/m1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the coordination chemistry of O-alkyl N-aryl thiocarbamate ligands, BiI3 was reacted with two equivalents of MeOC(=S)N(H)Ph in MeCN solution to afford the dinuclear title compound complexes [{I2Bi(μ2-I)2BiI2}{κ1-MeOC(=S)N(H)Ph}4] 1. Compound 1 was characterized by IR, UV and NMR spectroscopy, the formation of a dinuclear framework is ascertained by a single-crystal X-ray diffraction study performed at 100 K.
Collapse
|
5
|
Shadap L, Agarwal N, Chetry V, Poluri KM, Kaminsky W, Kollipara MR. Arene ruthenium, rhodium and iridium complexes containing benzamide derivative ligands: Study of interesting bonding modes, antibacterial, antioxidant and DNA binding studies. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|