1
|
Lau S, Mahon MF, Webster RL. Synthesis and Characterization of a Terminal Iron(II)-PH 2 Complex and a Series of Iron(II)-PH 3 Complexes. Inorg Chem 2024; 63:6998-7006. [PMID: 38563561 PMCID: PMC11022175 DOI: 10.1021/acs.inorgchem.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Reported is the reaction of a series of iron(II) bisphosphine complexes with PH3 in the presence of NaBArF4 [where BArF4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate]. The iron(II) bisphosphine reagents bear two chlorides or a hydride and a chloride motif. We have isolated six different cationic terminal-bound PH3 complexes and undertaken rigorous characterization by NMR spectroscopy, single crystal X-ray diffraction, and mass spectrometry, where the PH3 often remains intact during the ionization process. Unusual bis- and tris-PH3 complexes are among the compounds isolated. Changing the monophosphine from PH3 to PMe3 results in the formation of an unusual Fe7 cluster, but with no PMe3 being ligated. Finally, by using an iron(0) source, we have provided a rare example of a terminally bound iron-PH2 complex.
Collapse
Affiliation(s)
- Samantha Lau
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Ruth L. Webster
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
2
|
Bresciani G, Ciancaleoni G, Zacchini S, Biancalana L, Pampaloni G, Funaioli T, Marchetti F. Mixed valence triiron complexes from the conjugation of [Fe IFe I] and [Fe II] complexes via intermolecular carbyne/alkyne coupling. Dalton Trans 2024; 53:4299-4313. [PMID: 38345429 DOI: 10.1039/d4dt00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We present a new synthetic strategy for obtaining mixed-valence triiron complexes where the metal centers are bridged by a novel, highly functionalized hydrocarbyl ligand. The alkynyl-vinyliminium complexes [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(X-CCH)CHCNMe2}]CF3SO3 (X = 4-C6H4, [2a1]CF3SO3; X = (CH2)3, [2a2]CF3SO3) were synthesized in almost quantitative yields from the aminocarbyne precursor [Fe2Cp2(CO)2(μ-CO){μ-CNMe2}]CF3SO3, [1a]CF3SO3, and the di-alkynes HCC-X-CCH. Then, the ferracycle [Fe(Cp)(CO){C(NMe2)CHC(4-C6H4CCH)C(O)}], 4a1, was produced in 47% yield from the cleavage of [2a1]CF3SO3 promoted by pyrrolidine. Subsequent reactions of the acetonitrile adducts [Fe2Cp2(CO)(μ-CO)(NCMe){μ-CNMe(R)}]CF3SO3 (R = Me, [1aACN]CF3SO3; R = Xyl, [1bACN]CF3SO3) ([FeIFeI]) with 4a1 ([FeII]) at room temperature resulted in the formation of [FeIFeIFeII] complexes [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(X-CCHC(NMe2)FeCp(CO)CO)CHCNMe(R)}]CF3SO3 (R = Me, [5a1]CF3SO3; R = Xyl, [5b1]CF3SO3) in yields ranging from 56% to 64%. The new products were characterized by IR and multinuclear NMR spectroscopy, and the structures of [2a2]CF3SO3 and 4a1 were confirmed by single crystal X-ray diffraction. Cyclic voltammetry and spectroelectrochemical studies on [5a1]+ have revealed that reduction and oxidation events occur almost independently at the [FeIFeI] and [FeII] units, respectively. This observation underscores a minimal electronic interaction between the two fragments within the triiron complex. Accordingly, DFT studies pointed out that the HOMO and LUMO orbitals are predominantly localized in the two distinct compartments of [5a1]+.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Gianluca Ciancaleoni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Tiziana Funaioli
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
3
|
Durfy CS, Zurakowski JA, Jobin G, Drover MW. An Investigation of Allyl-Substituted Bis(Diphosphine) Iron Complexes: Towards Precursors for Cooperative CO 2 Activation. Chemistry 2024; 30:e202302721. [PMID: 37724786 DOI: 10.1002/chem.202302721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
In developing homogenous catalysts capable of CO2 activation, interaction with a metal center is often imperative. This work provides primary efforts towards the cooperative activation of CO2 using a Lewis acidic secondary coordination sphere (SCS) and iron via a paired theoretical/experimental approach. Specifically, this study reports efforts towards [Fe(diphosphine)2 (N2 )] as a CO2 -coordinated synthon where diphosphine=1,2-bis(di(3-cyclohexylboranyl)propylphosphino)ethane) (P2 BCy 4 ) or its precursor, 1,2-bis(diallylphosphino)ethane (tape). Initial efforts toward the {Fe(0)-N2 } complex were focused on deprotonation reactions of [Fe(diphosphine)2 (H)(NCCH3 )]+ and reduction of [Fe(tape)2 Cl2 ]. In the latter case, a mixture of intramolecularly π-bonded alkene and associated metallacyclic Fe(II)-H species were produced - heating this mixture provided the hydride as the major product. Notably, the interconversion of this pair counters that of related intermolecular reactions between [Fe(depe)2 ] (depe=1,2-bis(diethylphosphino)ethane) and ethylene, where hydride formation occurs subsequent to π-coordination; this has been probed by theoretical calculations. Finally, reactivity of the metallacyclic {Fe(II)-H} complex with CO2 was probed, resulting in a pair of isomeric ferra(II)lactones.
Collapse
Affiliation(s)
- Connor S Durfy
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Joseph A Zurakowski
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Gabriel Jobin
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| |
Collapse
|
4
|
Adamson TT, Uttley KB, Kelley SP, Bernskoetter WH. Coordination Chemistry of (Triphos)Fe(0) Ethylene Complexes and Their Application to CO 2 Valorization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tristan T. Adamson
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Katherine B. Uttley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Ayyappan R, Abdalghani I, Da Costa RC, Owen GR. Recent developments on the transformation of CO 2 utilising ligand cooperation and related strategies. Dalton Trans 2022; 51:11582-11611. [PMID: 35839074 DOI: 10.1039/d2dt01609e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portfolio of value-added chemicals, fuels and building block compounds can be envisioned from CO2 on an industrial scale. The high kinetic and thermodynamic stabilities of CO2, however, present a significant barrier to its utilisation as a C1 source. In this context, metal-ligand cooperation methodologies have emerged as one of the most dominant strategies for the transformation of the CO2 molecule over the last decade or so. This review focuses on the advancements in CO2 transformation using these cooperative methodologies. Different and well-studied ligand cooperation methodologies, such as dearomatisation-aromatisation type cooperation, bimetallic cooperation (M⋯M'; M' = main group or transition metal) and other related strategies are also discussed. Furthermore, the cooperative bond activations are subdivided based on the number of atoms connecting the reactive centre in the ligand framework (spacer/linker length) and the transition metal. Several similarities across these seemingly distinct cooperative methodologies are emphasised. Finally, this review brings out the challenges ahead in developing catalytic systems from these CO2 transformations.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | - Issam Abdalghani
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | | | - Gareth R Owen
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| |
Collapse
|