1
|
Raveggi E, Sobrero F, Gerbino G. Patient Specific Implants for Orbital Reconstruction in the Treatment of Silent Sinus Syndrome: Two Case Reports. J Pers Med 2023; 13:jpm13040578. [PMID: 37108964 PMCID: PMC10141094 DOI: 10.3390/jpm13040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Silent sinus syndrome is a rare disorder characterized by ipsilateral enophthalmos and hypoglobus following a collapse of the orbital floor, in the presence of asymptomatic long-term maxillary sinusitis. It results in enophthalmos, hypoglobus and deepening of the superior palpebral sulcus. A standardized treatment protocol for this infrequent syndrome has not yet been established. The management includes restoration of maxillary sinus ventilation with functional endoscopic sinus surgery and orbital reconstruction, either concurrently or separately. In this paper, the authors presented two patients successfully treated with patient-specific implants, and intraoperative navigation. These cases highlight the benefit of computer-assisted planning and titanium patient-specific implants in the management of silent sinus syndrome. To the best of our knowledge, this is the first report that described the use of PSI with titanium spacers performed with the aid of intraoperative navigation for SSS treatment. Advantages, drawbacks of this technique and treatment alternatives currently available in the literature were also discussed.
Collapse
|
2
|
Personalized Medicine Workflow in Post-Traumatic Orbital Reconstruction. J Pers Med 2022; 12:jpm12091366. [PMID: 36143151 PMCID: PMC9500769 DOI: 10.3390/jpm12091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Restoration of the orbit is the first and most predictable step in the surgical treatment of orbital fractures. Orbital reconstruction is keyhole surgery performed in a confined space. A technology-supported workflow called computer-assisted surgery (CAS) has become the standard for complex orbital traumatology in many hospitals. CAS technology has catalyzed the incorporation of personalized medicine in orbital reconstruction. The complete workflow consists of diagnostics, planning, surgery and evaluation. Advanced diagnostics and virtual surgical planning are techniques utilized in the preoperative phase to optimally prepare for surgery and adapt the treatment to the patient. Further personalization of the treatment is possible if reconstruction is performed with a patient-specific implant and several design options are available to tailor the implant to individual needs. Intraoperatively, visual appraisal is used to assess the obtained implant position. Surgical navigation, intraoperative imaging, and specific PSI design options are able to enhance feedback in the CAS workflow. Evaluation of the surgical result can be performed both qualitatively and quantitatively. Throughout the entire workflow, the concepts of CAS and personalized medicine are intertwined. A combination of the techniques may be applied in order to achieve the most optimal clinical outcome. The goal of this article is to provide a complete overview of the workflow for post-traumatic orbital reconstruction, with an in-depth description of the available personalization and CAS options.
Collapse
|
3
|
Dinu C, Tamas T, Agrigoroaei G, Stoia S, Opris H, Bran S, Armencea G, Manea A. Prospective Evaluation of Intraorbital Soft Tissue Atrophy after Posttraumatic Bone Reconstruction: A Risk Factor for Enophthalmos. J Pers Med 2022; 12:jpm12081210. [PMID: 35893304 PMCID: PMC9394391 DOI: 10.3390/jpm12081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Orbital fractures are a common finding in facial trauma, and serious complications may arise when orbital reconstruction is not performed properly. The virtual planning can be used to print stereolithographic models or to manufacture patient-specific titanium orbital implants (PSIs) through the process of selective laser melting. This method is currently considered the most accurate technique for orbital reconstruction. Even with the most accurate techniques of bone reconstruction, there are still situations where enophthalmos is present postoperatively, and it may be produced by intraorbital soft tissue atrophy. The aim of this paper was to evaluate the orbital soft tissue after posttraumatic reconstruction of the orbital walls’ fractures. Ten patients diagnosed and treated for unilateral orbital fractures were included in this prospective study. A postoperative CT scan of the head region with thin slices (0.6 mm) and soft and bone tissue windows was performed after at least 6 months. After data processing, the STL files were exported, and the bony volume, intraorbital fat tissue volume, and the muscular tissue volume were measured. The volumes of the reconstructed orbit tissues were compared with the volumes of the healthy orbit tissues for each patient. Our findings conclude that a higher or a lower grade of fat and muscular tissue loss is present in all cases of reconstructed orbital fractures. This can stand as a guide for primary or secondary soft tissue augmentation in orbital reconstruction.
Collapse
|
4
|
Clinical application of automated virtual orbital reconstruction for orbital fracture management with patient-specific implants: A prospective comparative study. J Craniomaxillofac Surg 2022; 50:686-691. [DOI: 10.1016/j.jcms.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
|
5
|
Schreurs R, Klop C, Gooris PJJ, Maal TJJ, Becking AG, Dubois L. Critical appraisal of patient-specific implants for secondary post-traumatic orbital reconstruction. Int J Oral Maxillofac Surg 2021; 51:790-798. [PMID: 34763984 DOI: 10.1016/j.ijom.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/01/2022]
Abstract
In orbital reconstruction, a patient-specific implant (PSI) may provide accurate reconstruction in complex cases, since the design can be tailored to the anatomy. Several design options may be embedded, for ease of positioning and precision of reconstruction. This study describes a cohort of 22 patients treated for secondary orbital reconstruction with a PSI; one patient received two PSI. The preoperative clinical characteristics and implant design options used are presented. When compared to preoperative characteristics, the postoperative clinical outcomes showed significant improvements in terms of enophthalmos (P < 0.001), diplopia (P < 0.001), and hypoglobus (P = 0.002). The implant position in all previous reconstructions was considered inadequate. Quantitative analysis after PSI reconstruction showed accurate positioning of the implant, with small median and 90th percentile deviations (roll: median 1.3°, 90th percentile 4.6°; pitch: median 1.4°, 90th percentile 3.9°; yaw: median 1.0°, 90th percentile 4.4°; translation: median 1.4 mm, 90th percentile 2.7 mm). Rim support proved to be a significant predictor of roll and rim extension for yaw. No significant relationship between design options or PSI position and clinical outcomes could be established. The results of this study show the benefits of PSI for the clinical outcomes in a large cohort of secondary post-traumatic orbital reconstructions.
Collapse
Affiliation(s)
- R Schreurs
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Location AMC and Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands; Radboudumc 3DLab, Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.
| | - C Klop
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Location AMC and Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| | - P J J Gooris
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Location AMC and Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| | - T J J Maal
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Location AMC and Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands; Radboudumc 3DLab, Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - A G Becking
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Location AMC and Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| | - L Dubois
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Location AMC and Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Gellrich NC, Eckstein FM, Lentge F, Zeller AN, Korn P. [Complex reconstructions in the facial and cranial regions]. Unfallchirurg 2021; 124:807-816. [PMID: 34499183 DOI: 10.1007/s00113-021-01076-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Posttraumatic reconstruction of the neurocranium and viscerocranium is an essential part of modern oral and maxillofacial surgery, in addition to oncological surgery, surgery of congenital craniofacial deformities and dental surgery. Due to the complex anatomy of the facial skull and significant esthetic and functional demands on its reconstruction, reconstructive trauma surgery in this area places the highest demands on the surgeon. This is all the more true if definitive craniomaxillofacial surgical treatment can sometimes only be performed with considerable delays for the benefit of other life-threatening injuries. In order to take these prerequisites into account, achievements of modern biomedical technology, such as intraoperative real-time navigation, computer-assisted planning and computer-assisted manufacturing (CAD/CAM) of patient-specific biomodels and implants, came up early for use in oral and maxillofacial surgery. In combination with intraoperative three-dimensional imaging, these methods result in a treatment pathway tailored to the individual patient, which is directly checked for quality at every step and thus ensures the best possible result for the patient. The use of these technologies extends far beyond the original indications in the area of orbital reconstruction and restoration of bony defects with simple geometry, such as skull defects. Nowadays, even the most complex pan-facial fractures can be restored esthetically and functionally by means of digitalized preliminary planning and individualized skull, orbital and zygomatic implants as well as total temporomandibular joint prostheses.
Collapse
Affiliation(s)
- Nils-Claudius Gellrich
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - Fabian Matthias Eckstein
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - Fritjof Lentge
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - Alexander-Nicolai Zeller
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - Philippe Korn
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
7
|
Zeller AN, Neuhaus MT, Gessler N, Skade S, Korn P, Jehn P, Gellrich NC, Zimmerer RM. Self-centering second-generation patient-specific functionalized implants for deep orbital reconstruction. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 122:372-380. [PMID: 33385579 DOI: 10.1016/j.jormas.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/24/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Deep and complete reconstruction of the orbital cavity has been shown to be essential for preventing enophthalmos and hypoglobus in patients with orbital defects or deformities. Additively manufactured patient-specific titanium implants provide unlimited options in design. However, implant malpositioning can still occur, even when intraoperative imaging and navigation are used. In this study, we investigated novel orbital implants containing features facilitating self-centering. Accuracy of implant placement and reconstruction of the orbital dimensions were compared retrospectively between self-centering second-generation patient-specific functionalized orbital implants (study group) and CAD-based individualized implants (control group). Design features of implants in the study group included functionalization with navigation tracks, a preventive design, and flanges - so called stabilizers - towards opposite orbital walls. Implant position was evaluated by fusion of preoperative virtual plans and the post-therapeutic imaging. Aberrances were quantified by 3D heatmap analysis. 31 patients were assigned to the study group and 50 to the control group, respectively. In the study group, most implants were designed with either one (n = 18, 58.06%) or two (n = 10, 32.26%) stabilizers. Twice (6.45%), one stabilizer had to be shortened intraoperatively. Implant fit analysis revealed a significantly more precise (p < 0.001) positioning in the study group (n = 22/31) than in the control group (n = 42/50). Self-centering second-generation patient-specific functionalized orbital implants showed significantly more accurate implant positioning, facilitating the transformation of virtual plans into patient's anatomy. The presented design provides an additional instrument for intraoperative quality control besides intraoperative imaging and navigation.
Collapse
Affiliation(s)
| | - Michael Tobias Neuhaus
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Nora Gessler
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Skade
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Philippe Korn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Philipp Jehn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Rüdiger M Zimmerer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|