1
|
Sun Y, Zheng H, Wang M, Gu R, Wu X, Yang Q, Zhao H, Bi Y, Zheng J. The effect of histo-blood group ABO system transferase (BGAT) on pregnancy related outcomes:A Mendelian randomization study. Comput Struct Biotechnol J 2024; 23:2067-2075. [PMID: 38800635 PMCID: PMC11126538 DOI: 10.1016/j.csbj.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Protein level of Histo-Blood Group ABO System Transferase (BGAT) has been reported to be associated with cardiometabolic diseases. But its effect on pregnancy related outcomes still remains unclear. Here we conducted a two-sample Mendelian randomization (MR) study to ascertain the putative causal roles of protein levels of BGAT in pregnancy related outcomes. Cis-acting protein quantitative trait loci (pQTLs) robustly associated with protein level of BGAT (P < 5 ×10-8) were used as instruments to proxy the BGAT protein level (N = 35,559, data from deCODE), with two additional pQTL datasets from Fenland (N = 10,708) and INTERVAL (N = 3301) used as validation exposures. Ten pregnancy related diseases and complications were selected as outcomes. We observed that a higher protein level of BGAT showed a putative causal effect on venous complications and haemorrhoids in pregnancy (VH) (odds ratio [OR]=1.19, 95% confidence interval [95% CI]=1.12-1.27, colocalization probability=91%), which was validated by using pQTLs from Fenland and INTERVAL. The Mendelian randomization results further showed effects of the BGAT protein on gestational hypertension (GH) (OR=0.97, 95% CI=0.96-0.99), despite little colocalization evidence to support it. Sensitivity analyses, including proteome-wide Mendelian randomization of the cis-acting BGAT pQTLs, showed little evidence of horizontal pleiotropy. Correctively, our study prioritised BGAT as a putative causal protein for venous complications and haemorrhoids in pregnancy. Future epidemiology and clinical studies are needed to investigate whether BGAT can be considered as a drug target to prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yuqi Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology,Shanghai Jiao Tong University School of Medicine, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haonan Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Basic Medical Science,Shanghai Jiao Tong University School of Medicine, China
| | - Manqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology,Shanghai Jiao Tong University School of Medicine, China
| | - Rongrong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology,Shanghai Jiao Tong University School of Medicine, China
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom
| | - Huiling Zhao
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom
| |
Collapse
|
2
|
Xu J, Ruan Z, Guo Z, Hou L, Wang G, Zheng Z, Zhang X, Liu H, Sun K, Guo F. Inhibition of SAT1 alleviates chondrocyte inflammation and ferroptosis by repressing ALOX15 expression and activating the Nrf2 pathway. Bone Joint Res 2024; 13:110-123. [PMID: 38447596 PMCID: PMC10917474 DOI: 10.1302/2046-3758.133.bjr-2023-0250.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Aims Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA.
Collapse
Affiliation(s)
- Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wang Y, Li T, Yang Q, Feng B, Xiang Y, Lv Z, Weng X. LncRNA THUMPD3-AS1 enhances the proliferation and inflammatory response of chondrocytes in osteoarthritis. Int Immunopharmacol 2021; 100:108138. [PMID: 34509934 DOI: 10.1016/j.intimp.2021.108138] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) regulate the occurrence and development of osteoarthritis (OA), whereas the biological roles and mechanisms of the lncRNA THUMPD3-AS1 (THUMPD3 antisense RNA 1) in OA remain still unclear. This study described the role and molecular mechanism of lncRNA THUMPD3-AS1 in regulating OA biology. METHOD The knee normal and OA cartilage tissues from ten participants were sequenced to reveal the differentially expressed lncRNAs. The interleukin (IL)-1β-stimulated C28/I2 cell served as OA cells. Flow cytometry assays, Western blot, enzyme-linked immunosorbent assays were used for our experiments. RESULTS The results revealed that lncRNA THUMPD3-AS1 was downregulated in OA cartilage tissues and IL-1β-stimulated chondrocyte cell line. Overexpression of lncRNA THUMPD3-AS1 alleviated cell apoptosis and facilitated inflammatory responses, whereas knockdown had opposite effects. LncRNA THUMPD3-AS1 markedly increased the cyclin E2, cyclin-dependent kinase 4, B-cell lymphoma 2, tumor necrosis factor-α, nitric oxide, and IL-6 levels, and decreased the caspase-3 level. Furthermore, the target proteins of phosphorylation were identified as nuclear factor-κB p65 and mitogen-activated protein kinase p38, which could be indirectly suppressed by lncRNA THUMPD3-AS1 knockdown. CONCLUSION Our findings highlight the different effects of lncRNA THUMPD3-AS1 on cell apoptosis and inflammatory response, which extend the multiple functions of lncRNA epigenetics in OA biology.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yongbo Xiang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
4
|
Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, Wang G, Guo Z, Ye Y, Guo F. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2020; 27:33-43. [PMID: 33376672 PMCID: PMC7750492 DOI: 10.1016/j.jot.2020.09.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 09/16/2020] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is a complex process comprised of mechanical load, inflammation, and metabolic factors. It is still unknown that if chondrocytes undergo ferroptosis during OA and if ferroptosis contribute to the progression of OA. Materials and methods In our study, we use Interleukin-1 Beta (IL-1β) to simulate inflammation and ferric ammonium citrate (FAC) to simulate the iron overload in vitro. Also, we used the surgery-induced destabilized medial meniscus (DMM) mouse model to induce OA in vivo. We verify ferroptosis by its definition that defined by the Nomenclature Committee on Cell Death with both in vitro and in vivo model. Results We observed that both IL-1β and FAC induced reactive oxygen species (ROS), and lipid ROS accumulation and ferroptosis related protein expression changes in chondrocytes. Ferrostatin-1, a ferroptosis specific inhibitor, attenuated the cytotoxicity, ROS and lipid-ROS accumulation and ferroptosis related protein expression changes induced by IL-1β and FAC and facilitated the activation of Nrf2 antioxidant system. Moreover, erastin, the most classic inducer of ferroptosis, promoted matrix metalloproteinase 13 (MMP13) expression while inhibited type II collagen (collagen II) expression in chondrocytes. At last, we proved that intraarticular injection of ferrostatin-1 rescued the collagen II expression and attenuated the cartilage degradation and OA progression in mice OA model. Conclusions In summary, our study firstly proved that chondrocytes underwent ferroptosis under inflammation and iron overload condition. Induction of ferroptosis caused increased MMP13 expression and decreased collagen II expression in chondrocytes. Furthermore, inhibition of ferroptosis, by intraarticular injection of ferrostatin-1, in our case, seems to be a novel and promising option for the prevention of OA. The translational potential of this article The translation potential of this article is that we first indicated that chondrocyte ferroptosis contribute to the progression of osteoarthritis which provides a novel strategy in the prevention of OA.
Collapse
Affiliation(s)
- Xudong Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiahui Luo
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiamin Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| |
Collapse
|