1
|
Smith SA, Norbury R, Hunt AJ, Mauger AR. Intra- and interindividual reliability of muscle pain induced by an intramuscular injection of hypertonic saline injection into the quadriceps. Eur J Pain 2023; 27:1216-1225. [PMID: 37376739 DOI: 10.1002/ejp.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Intramuscular injections of hypertonic saline are commonly used to induce experimental muscle pain, but reliability data on this technique are lacking. This study investigated the intra- and interindividual reliability of pain measures from a hypertonic saline injection into the vastus lateralis. METHODS Fourteen healthy participants (6 female) attended three laboratory visits where they received an intramuscular injection of 1 mL hypertonic saline into the vastus lateralis. Changes in pain intensity were recorded on an electronic visual analogue scale, and pain quality was assessed after pain had resolved. Reliability was assessed with the coefficient of variation (CV), minimum detectable change (MDC) and intraclass correlation coefficient (ICC) with 95% CIs. RESULTS Mean pain intensity displayed high levels of intraindividual variability (CV = 16.3 [10.5-22.0]%) and 'poor' to 'very good' relative reliability (ICC = 0.71 [0.45-0.88]) but had a MDC of 11 [8-16] au (out of 100). Peak pain intensity exhibited high levels of intraindividual variability (CV = 14.8 [8.8-20.8]%) with 'moderate' to 'excellent' levels of relative reliability (ICC = 0.81 [0.62-0.92]), whereas the MDC was 18 [14-26] au. Measures of pain quality exhibited good reliability. Interindividual variability in pain measures was high (CV > 37%). CONCLUSIONS Intramuscular injections of 1 mL of hypertonic saline into the vastus lateralis display substantial levels of interindividual variability, but MDC is below the clinically important changes in pain. This model of experimental pain is suitable for studies involving repeated exposures. SIGNIFICANCE Many pain research studies have performed intramuscular injections of hypertonic saline to investigate responses to muscle pain. However, the reliability of this technique is not well established. We examined the pain response over three repeated sessions of a hypertonic saline injection. The pain induced by hypertonic saline has considerable interindividual variability but has largely acceptable intraindividual reliability. Therefore, the injections of hypertonic saline to induce muscle pain are a reliable model of experimental muscle pain.
Collapse
Affiliation(s)
- Samuel A Smith
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - Ryan Norbury
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, UK
| | - Adam J Hunt
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - Alexis R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| |
Collapse
|
2
|
Galve Villa M, Palsson TS, Boudreau SA. Spatiotemporal patterns of pain distribution and recall accuracy: a dose-response study. Scand J Pain 2022; 22:154-166. [PMID: 34343420 DOI: 10.1515/sjpain-2021-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Clinical decisions rely on a patient's ability to recall and report their pain experience. Monitoring pain in real-time (momentary pain) may reduce recall errors and optimize the clinical decision-making process. Tracking momentary pain can provide insights into detailed changes in pain intensity and distribution (area and location) over time. The primary aims of this study were (i) to measure the temporal changes of pain intensity, area, and location in a dose-response fashion and (ii) to assess recall accuracy of the peak pain intensity and distribution seven days later, using a digital pain mapping application. The secondary aims were to (i) evaluate the influence of repeated momentary pain drawings on pain recall accuracy and (ii) explore the associations among momentary and recall pain with psychological variables (pain catastrophizing and perceived stress). METHODS Healthy participants (N=57) received a low (0.5 ml) or a high (1.0 ml) dose of hypertonic saline (5.8%) injection into the right gluteus medius muscle and, subsequently, were randomized into a non-drawing or a drawing group. The non-drawing groups reported momentary pain intensity every 30-s. Whereas the drawing groups reported momentary pain intensity and distribution on a digital body chart every 30-s. The pain intensity, area (pixels), and distribution metrics (compound area, location, radiating extent) were compared at peak pain and over time to explore dose-response differences and spatiotemporal patterns. All participants recalled the peak pain intensity and the peak (most extensive) distribution seven days later. The peak pain intensity and area recall error was calculated. Pain distribution similarity was determined using a Jaccard index which compares pain drawings representing peak distribution at baseline and recall. The relationships were explored among peak intensity and area at baseline and recall, catastrophizing, and perceived stress. RESULTS The pain intensity, area, distribution metrics, and the duration of pain were lower for the 0.5 mL than the 1.0 mL dose over time (p<0.05). However, the pain intensity and area were similar between doses at peak pain (p>0.05). The pain area and distribution between momentary and recall pain drawings were similar (p>0.05), as reflected in the Jaccard index. Additionally, peak pain intensity did not correlate with the peak pain area. Further, peak pain intensity, but not area, was correlated with catastrophizing (p<0.01). CONCLUSIONS This study showed differences in spatiotemporal patterns of pain intensity and distribution in a dose-response fashion to experimental acute low back pain. Unlike pain intensity, pain distribution and area may be less susceptible in an experimental setting. Higher intensities of momentary pain do not appear to influence the ability to recall the pain intensity or distribution in healthy participants. IMPLICATIONS The recall of pain distribution in experimental settings does not appear to be influenced by the intensity despite differences in the pain experience. Pain distribution may add additional value to mechanism-based studies as the distribution reports do not vary with pain catastrophizing. REC# N-20150052.
Collapse
Affiliation(s)
- Maria Galve Villa
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Center for Sensory Motor Interaction (SMI©), Aalborg University, Aalborg, Denmark
| | - Thorvaldur S Palsson
- Department of Health Science and Technology, Faculty of Medicine, Center for Sensory Motor Interaction (SMI©), Aalborg University, Aalborg, Denmark
| | - Shellie A Boudreau
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Center for Sensory Motor Interaction (SMI©), Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Dunn JS, Mahns DA, Nagi SS. Modulation of Muscle Pain Is Not Somatotopically Restricted: An Experimental Model Using Concurrent Hypertonic-Normal Saline Infusions in Humans. FRONTIERS IN PAIN RESEARCH 2020; 1:601544. [PMID: 35295695 PMCID: PMC8915694 DOI: 10.3389/fpain.2020.601544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022] Open
Abstract
We have previously shown that during muscle pain induced by infusion of hypertonic saline (HS), concurrent application of vibration and gentle brushing to overlying and adjacent skin regions increases the overall pain. In the current study, we focused on muscle-muscle interactions and tested whether HS-induced muscle pain can be modulated by innocuous/sub-perceptual stimulation of adjacent, contralateral, and remote muscles. Psychophysical observations were made in 23 healthy participants. HS (5%) was infused into a forearm muscle (flexor carpi ulnaris) to produce a stable baseline pain. In separate experiments, in each of the three test locations (n = 10 per site)—ipsilateral hand (abductor digiti minimi), contralateral forearm (flexor carpi ulnaris), and contralateral leg (tibialis anterior)—50 μl of 0.9% normal saline (NS) was infused (in triplicate) before, during, and upon cessation of HS-induced muscle pain in the forearm. In the absence of background pain, the infusion of NS was imperceptible to all participants. In the presence of HS-induced pain in the forearm, the concurrent infusion of NS into the ipsilateral hand, contralateral forearm, and contralateral leg increased the overall pain by 16, 12, and 15%, respectively. These effects were significant, reproducible, and time-locked to NS infusions. Further, the NS-evoked increase in pain was almost always ascribed to the forearm where HS was infused with no discernible percept attributed to the sites of NS infusion. Based on these observations, we conclude that intramuscular infusion of HS results in muscle hyperalgesia to sub-perceptual stimulation of muscle afferents in a somatotopically unrestricted manner, indicating the involvement of a central (likely supra-spinal) mechanism.
Collapse
Affiliation(s)
- James S. Dunn
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - David A. Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Saad S. Nagi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- *Correspondence: Saad S. Nagi
| |
Collapse
|
4
|
Ford B, Halaki M, Diong J, Ginn KA. Acute experimentally-induced pain replicates the distribution but not the quality or behaviour of clinical appendicular musculoskeletal pain. A systematic review. Scand J Pain 2020; 21:217-237. [PMID: 34387953 DOI: 10.1515/sjpain-2020-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Experimental pain is a commonly used method to draw conclusions about the motor response to clinical musculoskeletal pain. A systematic review was performed to determine if current models of acute experimental pain validly replicate the clinical experience of appendicular musculoskeletal pain with respect to the distribution and quality of pain and the pain response to provocation testing. METHODS A structured search of Medline, Scopus and Embase databases was conducted from database inception to August 2020 using the following key terms: "experimental muscle pain" OR "experimental pain" OR "pain induced" OR "induced pain" OR "muscle hyperalgesia" OR ("Pain model" AND "muscle"). Studies in English were included if investigators induced experimental musculoskeletal pain into a limb (including the sacroiliac joint) in humans, and if they measured and reported the distribution of pain, quality of pain or response to a provocation manoeuvre performed passively or actively. Studies were excluded if they involved prolonged or delayed experimental pain, if temporomandibular, orofacial, lumbar, thoracic or cervical spine pain were investigated, if a full text of the study was not available or if they were systematic reviews. Two investigators independently screened each title and abstract and each full text paper to determine inclusion in the review. Disagreements were resolved by consensus with a third investigator. RESULTS Data from 57 experimental pain studies were included in this review. Forty-six of these studies reported pain distribution, 41 reported pain quality and six detailed the pain response to provocation testing. Hypertonic saline injection was the most common mechanism used to induce pain with 43 studies employing this method. The next most common methods were capsaicin injection (5 studies) and electrical stimulation, injection of acidic solution and ischaemia with three studies each. The distribution of experimental pain was similar to the area of pain reported in clinical appendicular musculoskeletal conditions. The quality of appendicular musculoskeletal pain was not replicated with the affective component of the McGill Pain Questionnaire consistently lower than that typically reported by musculoskeletal pain patients. The response to provocation testing was rarely investigated following experimental pain induction. Based on the limited available data, the increase in pain experienced in clinical populations during provocative maneuvers was not consistently replicated. CONCLUSIONS Current acute experimental pain models replicate the distribution but not the quality of chronic clinical appendicular musculoskeletal pain. Limited evidence also indicates that experimentally induced acute pain does not consistently increase with tests known to provoke pain in patients with appendicular musculoskeletal pain. The results of this review question the validity of conclusions drawn from acute experimental pain studies regarding changes in muscle behaviour in response to pain in the clinical setting.
Collapse
Affiliation(s)
- Brendon Ford
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW Australia
| | - Mark Halaki
- Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Sydney, NSWAustralia
| | - Joanna Diong
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW Australia
| | - Karen A Ginn
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW Australia
| |
Collapse
|
5
|
Palsson TS, Boudreau SA, Krebs HJ, Graven-Nielsen T. Experimental Referred Pain Extends Toward Previously Injured Location: An Explorative Study. THE JOURNAL OF PAIN 2018; 19:1189-1200. [DOI: 10.1016/j.jpain.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
6
|
Tolerability of hypertonic injectables. Int J Pharm 2015; 490:308-15. [DOI: 10.1016/j.ijpharm.2015.05.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022]
|
7
|
Dommerholt J, Layton M, Hooks T, Grieve R. A critical overview of current myofascial pain literature – March 2015. J Bodyw Mov Ther 2015; 19:337-49. [DOI: 10.1016/j.jbmt.2015.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Dommerholt J, Gerwin RD. A critical evaluation of Quintner et al: missing the point. J Bodyw Mov Ther 2015; 19:193-204. [PMID: 25892372 DOI: 10.1016/j.jbmt.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/03/2023]
Abstract
The objective of this article is to critically analyze a recent publication by Quinter, Bove and Cohen, published in Rheumatology, about myofascial pain syndrome and trigger points (Quintner et al., 2014). The authors concluded that the leading trigger point hypothesis is flawed in reasoning and in science. They claimed to have refuted the trigger point hypothesis. The current paper demonstrates that the Quintner et al. paper is a biased review of the literature replete with unsupported opinions and accusations. In summary, Quintner et al. have not presented any convincing evidence to believe that the Integrated TrP Hypothesis should be laid to rest.
Collapse
Affiliation(s)
- Jan Dommerholt
- Bethesda Physiocare, Bethesda, MD, USA; PhysioFitness, Rockville, MD, USA; Myopain Seminars, Bethesda, MD, USA.
| | - Robert D Gerwin
- Myopain Seminars, Bethesda, MD, USA; Johns Hopkins University, Baltimore, MD, USA; Pain & Rehabilitation Medicine, Bethesda, MD, USA.
| |
Collapse
|
9
|
Consistent interindividual increases or decreases in muscle sympathetic nerve activity during experimental muscle pain. Exp Brain Res 2014; 232:1309-15. [DOI: 10.1007/s00221-014-3847-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
|
10
|
Nagi SS, Mahns DA. C-tactile fibers contribute to cutaneous allodynia after eccentric exercise. THE JOURNAL OF PAIN 2013; 14:538-48. [PMID: 23562300 DOI: 10.1016/j.jpain.2013.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED We recently showed that during acute muscle pain, C-tactile (CT) fibers mediate allodynia in healthy human subjects. In this study, we pursued the following questions: Do CTs contribute to allodynia observed in delayed onset muscle soreness (DOMS)? Is CT-mediated allodynia reproducible in a clinical pain state? In 30 healthy subjects, DOMS was induced in anterior compartment muscles of the leg by repeated eccentric contractions. DOMS was confirmed by mapping the emergence of tender points (decreased pressure pain thresholds). Furthermore, we measured pressure pain thresholds in a clinical subject who presented with activity-triggered heel pain but no resting pain. Cutaneous vibration (sinusoidal; 200 Hz-200 μm)--an otherwise innocuous stimulus--was applied to anterolateral leg before exercise, during DOMS, and following recovery from DOMS. The peripheral origin of allodynia was determined by employing conduction blocks of unmyelinated (intradermal anesthesia) and myelinated (nerve compression) fibers. In DOMS state, there was no resting pain, but vibration reproducibly evoked pain (allodynia). The blockade of cutaneous C fibers abolished this effect, whereas it persisted during blockade of myelinated fibers. In the clinical subject, without exposure to eccentric exercise, vibration (and brushing) produced a cognate expression of CT-mediated allodynia. These observations attest to a broader role of CTs in pain processing. PERSPECTIVE This is the first study to demonstrate the contribution of CT fibers to mechanical allodynia in exercise-induced as well as pathological pain states. These findings are of clinical significance, given the crippling effect of sensory impairments on the performance of competing athletes and patients with chronic pain and neurological disorders.
Collapse
Affiliation(s)
- Saad S Nagi
- University of Western Sydney, School of Medicine, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Sánchez Robles EM, Bagües Arias A, Martín Fontelles MI. Cannabinoids and muscular pain. Effectiveness of the local administration in rat. Eur J Pain 2013; 16:1116-27. [PMID: 22354705 DOI: 10.1002/j.1532-2149.2012.00115.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pain associated with musculoskeletal disorders can be difficult to control and the incorporation of new approaches for its treatment is an interesting challenge. Activation of cannabinoid (CB) receptors decreases nociceptive transmission in acute, inflammatory and neuropathic pain states; however, although the use of cannabis derivatives has been recently accepted as a useful alternative for the treatment of spasticity and pain in patients with multiple sclerosis, the effects of CB receptor agonists in muscular pain have hardly been studied. METHODS Here, we characterized the antinociceptive effect of non selective and selective CB agonists by systemic and local administration, in two muscular models of pain, masseter and gastrocnemius, induced by hypertonic saline (HS) injection. Drugs used were: the non-selective agonist WIN 55,212-2 and two selective agonists, ACEA (CB 1) and JWH 015 (CB 2); AM 251 (CB 1) and AM 630 (CB 2) were used as selective antagonists. RESULTS In the masseter pain model, both systemic (intraperitoneal) and local (intramuscular) administration of CB 1 and CB 2 agonists reduced the nociceptive behaviour induced by HS, whereas in the gastrocnemius model the local administration was more effective than systemic. CONCLUSIONS Our results provide evidence that both, CB 1 and CB 2 receptors can contribute to muscular antinociception and, interestingly, suggest that the local administration of CB agonists could be a new and useful pharmacological strategy in the treatment of muscular pain, avoiding adverse effects induced by systemic administration.
Collapse
Affiliation(s)
- E Ma Sánchez Robles
- Departamento de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | | |
Collapse
|
12
|
Rubin TK, Lake S, van der Kooi S, Lucas NP, Mahns DA, Henderson LA, Macefield VG. Predicting the spatiotemporal expression of local and referred acute muscle pain in individual subjects. Exp Brain Res 2012; 223:11-8. [DOI: 10.1007/s00221-012-3236-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022]
|
13
|
Fazalbhoy A, Birznieks I, Macefield VG. Individual differences in the cardiovascular responses to tonic muscle pain: parallel increases or decreases in muscle sympathetic nerve activity, blood pressure and heart rate. Exp Physiol 2012; 97:1084-92. [DOI: 10.1113/expphysiol.2012.066191] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|