1
|
Chase R, de la Peña JB, Smith PR, Lawson J, Lou TF, Stanowick AD, Black BJ, Campbell ZT. Global analyses of mRNA expression in human sensory neurons reveal eIF5A as a conserved target for inflammatory pain. FASEB J 2022; 36:e22422. [PMID: 35747924 DOI: 10.1096/fj.202101933rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.
Collapse
Affiliation(s)
- Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Patrick R Smith
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Alexander D Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Bryan J Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
2
|
Reduced response to chronic mild stress in PACAP mutant mice is associated with blunted FosB expression in limbic forebrain and brainstem centers. Neuroscience 2016; 330:335-58. [DOI: 10.1016/j.neuroscience.2016.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/29/2022]
|
3
|
Weygant N, Qu D, Berry WL, May R, Chandrakesan P, Owen DB, Sureban SM, Ali N, Janknecht R, Houchen CW. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1. Mol Cancer 2014; 13:103. [PMID: 24885928 PMCID: PMC4030036 DOI: 10.1186/1476-4598-13-103] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. RESULTS Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. CONCLUSIONS Given DCLK1's tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs.
Collapse
Affiliation(s)
- Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - William L Berry
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | | | - Daniel B Owen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sripathi M Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Naushad Ali
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, USA
| | - Ralf Janknecht
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Courtney W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, USA
- COARE Biotechnology, Oklahoma City, OK, USA
| |
Collapse
|
4
|
Morava É, Kozicz T. Mitochondria and the economy of stress (mal)adaptation. Neurosci Biobehav Rev 2013; 37:668-80. [DOI: 10.1016/j.neubiorev.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/20/2013] [Accepted: 02/05/2013] [Indexed: 12/22/2022]
|
5
|
Borges GS, Berrocoso E, Ortega-Alvaro A, Mico JA, Neto FL. Extracellular signal-regulated kinase activation in the chronic constriction injury model of neuropathic pain in anaesthetized rats. Eur J Pain 2012; 17:35-45. [PMID: 23055268 DOI: 10.1002/j.1532-2149.2012.00181.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND The role of extracellular signal-regulated kinases (ERKs) in nociception has been explored in the last years. While in spinal cord their activation is frequently correlated with pain or acute noxious stimuli, supraspinally, this association is not so evident and remains unclear. This study aims to evaluate ERK1/2 activation in the spinal cord and brainstem nuclei upon neuropathy and/or an additional mechanical stimulus. METHODS Acute noxious mechanical stimulation was applied in the left hindpaw of anaesthetized SHAM-operated and chronic constriction injured (CCI, neuropathic pain model) rats. Other SHAM or CCI rats did not receive any stimulus. Immunohistochemistry against the phosphorylated isoforms of ERK1/2 (pERK1/2) was performed in lumbar spinal cord and brainstem sections to assess ERK1/2 activation. RESULTS In the spinal cord, stimulation promoted an increase in pERK1/2 expression in the superficial dorsal horn of SHAM rats. No significant effects were caused by CCI alone. At supraspinal level, changes in ERK1/2 activation induced by CCI were observed in A5, locus coeruleus (LC), raphe obscurus (ROb), raphe magnus, dorsal raphe (DRN), lateral reticular and paragigantocellularis nucleus. CCI increased pERK1/2 expression in all these nuclei, with exception of LC, where a significant decrease was verified. Mechanical noxious stimulation of CCI rats decreased pERK1/2 expression in ROb and DRN, but no further changes were detected in either SHAM- or CCI-stimulated animals. CONCLUSION ERK1/2 are differentially activated in the spinal cord and in selected brainstem nuclei implicated in nociception, in response to an acute noxious stimulus and/or to a neuropathic pain condition.
Collapse
Affiliation(s)
- G S Borges
- Departamento de Biologia Experimental, Centro de Investigação Médica-Faculdade de Medicina (CIM-FMUP), Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
6
|
Xu L, Scheenen WJJM, Roubos EW, Kozicz T. Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen Comp Endocrinol 2012; 177:296-304. [PMID: 22166814 DOI: 10.1016/j.ygcen.2011.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
The continuously changing environment demands for adequate stress responses to maintain the internal dynamic equilibrium of body and mind. A successful stress response requires energy, in an amount matching the severity of the stressor and the type of response ('fight, flight or freeze'). The stress response is generated by the central nervous system, which needs to be informed about both the threatening stressor and the availability of energy. In this review, evidence is considered for a role of the midbrain Edinger-Westphal centrally projecting neuron population (EWcp; synonym: non-preganglionic Edinger-Westphal nucleus) in the energy-dependent stress adaptation response. It deals with studies on the neurochemical organization of the EWcp with particular reference to the neuropeptides urocortin-1 and cocaine- and amphetamine-regulated transcript peptide, on the EWcp responses to different types of stressor (e.g., acute and chronic) and a changed energy state (e.g., fasting and leptin change), and on the sex-specificity of these responses. Finally, a model is presented for the way the EWcp might contribute to the coordination of the energy-dependent stress adaptation response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Rouwette T, Vanelderen P, de Reus M, Loohuis NO, Giele J, van Egmond J, Scheenen W, Scheffer GJ, Roubos E, Vissers K, Kozicz T. Experimental neuropathy increases limbic forebrain CRF. Eur J Pain 2012; 16:61-71. [PMID: 21684787 DOI: 10.1016/j.ejpain.2011.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuropathic pain is often accompanied by stress, anxiety and depression. Although there is evidence for involvement of corticotropin-releasing factor (CRF), the detailed neuronal basis of these pain-related mood alterations is unknown. This study shows that peripheral mononeuropathy was accompanied by changes in limbic forebrain CRF, but did not lead to changes in the functioning of the hypothalamo-pituitary-adrenal axis and the midbrain Edinger-Westphal centrally projecting (EWcp) neuron population, which play main roles in the organism's response to acute pain. Twenty-four days after chronic constriction injury (CCI) of the rat sciatic nerve, the oval bed nucleus of the stria terminalis (BSTov) contained substantially more Crf mRNA as did the central amygdala (CeA), which, in addition, possessed more CRF. In contrast, Crf mRNA and CRF contents of the hypothalamic paraventricular nucleus (PVN) were unaffected by CCI. Similarly, EWcp neurons, producing the CRF family member urocortin 1 (Ucn1) and constitutively activated by various stressors including acute pain, did not show an effect of CCI on Ucn1 mRNA or Ucn1. Also, the immediate early gene products cFos and deltaFosB in the EWcp were unaffected by CCI. These results indicate that neuropathic pain does not act via the HPA-axis or the EWcp, but includes a main role of Crf in the limbic system, which is in clear contrast to stressors like acute and chronic pain, which primarily act on the PVN and the EWcp.
Collapse
Affiliation(s)
- T Rouwette
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Giardino WJ, Cote DM, Li J, Ryabinin AE. Characterization of Genetic Differences within the Centrally Projecting Edinger-Westphal Nucleus of C57BL/6J and DBA/2J Mice by Expression Profiling. Front Neuroanat 2012; 6:22. [PMID: 22347848 PMCID: PMC3278674 DOI: 10.3389/fnana.2012.00005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/13/2022] Open
Abstract
Detailed examination of the midbrain Edinger–Westphal (EW) nucleus revealed the existence of two distinct nuclei. One population of EW preganglionic (EWpg) neurons was found to control oculomotor functions, and a separate population of EW centrally projecting (EWcp) neurons was found to contain stress- and feeding-related neuropeptides. Although it has been shown that EWcp neurons are highly responsive to drugs of abuse and behavioral stress, a genetic characterization of the EWcp was needed. To identify genetic differences in the EWcp of inbred mouse strains that differ in behaviors relevant to EWcp function, we used publicly available tools from the Allen Brain Atlas to identify 68 transcripts that were selectively expressed in the EWcp, and examined their expression within tissue punch microdissection samples containing the EWcp of adult male C57BL/6J (B6) and DBA/2J (D2) mice. Using 96-well quantitative real-time PCR (qPCR) arrays that included the EWcp-specific genes, several other genes of interest, and five housekeeping genes, we identified strain differences in expression of 11 EWcp-specific genes (BC023892, Btg3, Bves, Cart, Cck, Ghsr, Neto1, Postn, Ptprn, Rcn1, and Ucn), two immediate early genes (Egr1 and Fos), and one dopamine-related gene (Drd5). All significant expression differences were greater in B6 vs. D2 mice, and several of these were verified either at the protein level using immunohistochemistry (IHC) or in silico using microarray data sets from whole brain and other brain areas. These results demonstrate a significant advance in our understanding of the EWcp on three levels. First, we generated a list of EWcp-specific genes (most of which had not yet been reported within the EWcp in the literature) that will be informative for future studies of EWcp function. Second, due to similarity in results from qPCR and IHC, we revealed that strain differences in basal EWcp neuropeptide content are accounted for by differential transcription and number of peptidergic neurons, rather than by differential rates of peptide release. And third, our identification of differentially expressed EWcp-specific genes between B6 and D2 mice may hold powerful insight into the neurogenetic contributions of the EWcp to stress- and addiction-related behaviors.
Collapse
Affiliation(s)
- William J Giardino
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA
| | | | | | | |
Collapse
|
9
|
Sterrenburg L, Gaszner B, Boerrigter J, Santbergen L, Bramini M, Elliott E, Chen A, Peeters BWMM, Roubos EW, Kozicz T. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One 2011; 6:e28128. [PMID: 22132228 PMCID: PMC3223222 DOI: 10.1371/journal.pone.0028128] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS Male and female rats were exposed to chronic variable mild stress (CVMS) after which immediate early gene products, corticotropin-releasing factor (CRF) mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN), oval (BSTov) and fusiform (BSTfu) parts of the bed nucleus of the stria terminalis, and central amygdala (CeA). RESULTS CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.
Collapse
Affiliation(s)
- Linda Sterrenburg
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Jeroen Boerrigter
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Lennart Santbergen
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mattia Bramini
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Evan Elliott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Bernard W. M. M. Peeters
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Eric W. Roubos
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Rouwette T, Klemann K, Gaszner B, Scheffer G, Roubos E, Scheenen W, Vissers K, Kozicz T. Differential responses of corticotropin-releasing factor and urocortin 1 to acute pain stress in the rat brain. Neuroscience 2011; 183:15-24. [DOI: 10.1016/j.neuroscience.2011.03.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 12/22/2022]
|
11
|
Genomic loci and candidate genes underlying inflammatory nociception. Pain 2010; 152:599-606. [PMID: 21195549 DOI: 10.1016/j.pain.2010.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/16/2010] [Accepted: 11/29/2010] [Indexed: 11/20/2022]
Abstract
Heritable genetic factors contribute significantly to inflammatory nociception. To determine candidate genes underlying inflammatory nociception, the current study used a mouse model of abdominal inflammatory pain. BXD recombinant inbred (RI) mouse strains were administered the intraperitoneal acetic acid test, and genome-wide quantitative trait locus (QTL) mapping was performed on the mean number of abdominal contraction and extension movements in 3 distinct groups of BXD RI mouse strains in 2 separate experiments. Combined mapping results detected 2 QTLs on chromosomes (Chr) 3 and 10 across experiments and groups of mice; an additional sex-specific QTL was detected on Chr 16. The results replicate previous findings of a significant QTL, Nociq2, on distal Chr 10 for formalin-induced inflammatory nociception and will aid in identification of the underlying candidate genes. Comparisons of sensitivity to intraperitoneal acetic acid in BXD RI mouse strains with microarray mRNA transcript expression profiles in specific brain areas detected covarying expression of candidate genes that are also found in the detected QTL confidence intervals. The results indicate that common and distinct genetic mechanisms underlie heritable sensitivity to diverse inflammatory insults, and provide a discrete set of high-priority candidate genes to investigate further in rodents and human association studies. Novel genomic regions linked to inflammatory nociception were detected, a previously reported locus was confirmed, and high-priority candidate genes for inflammatory nociception and pain were identified.
Collapse
|
12
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|