1
|
Sessle BJ. Modulatory Processes in Craniofacial Pain States. ADVANCES IN NEUROBIOLOGY 2024; 35:107-124. [PMID: 38874720 DOI: 10.1007/978-3-031-45493-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pain is a common symptom associated with many disorders affecting the craniofacial tissues that include the teeth and their supporting structures, the jaw, face and tongue muscles, and the temporomandibular joint. Most acute craniofacial pain states are easily recognized and readily treated, but chronic craniofacial pain states (e.g., temporomandibular disorders [TMD], trigeminal neuropathies, and some headaches) may be especially challenging to manage successfully. This chapter provides an overview of the processes that underlie craniofacial pain, with a focus on the pain-modulatory mechanisms operating in craniofacial tissues and in the central nervous system (CNS), including the role of endogenous chemical processes such as those involving opioids. The chapter outlines in particular findings from preclinical studies that have provided substantial information about the neural as well as nonneural (e.g., glial) processes involved in the initiation, transmission, and modulation of nociceptive signals in the trigeminal system, and also draws attention to their clinical correlates. The increased understanding gained from these preclinical studies of how nociceptive signals can be modulated will contribute to improvements in presently available therapeutic approaches to manage craniofacial pain as well as to the development of novel analgesic approaches.
Collapse
Affiliation(s)
- Barry J Sessle
- Department of Oral Physiology Faculty of Dentistry, Department of Physiology Faculty of Medicine, Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kocot-Kępska M, Pawlik K, Ciapała K, Makuch W, Zajączkowska R, Dobrogowski J, Przeklasa-Muszyńska A, Mika J. Phenytoin Decreases Pain-like Behaviors and Improves Opioid Analgesia in a Rat Model of Neuropathic Pain. Brain Sci 2023; 13:858. [PMID: 37371338 DOI: 10.3390/brainsci13060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Neuropathic pain remains a clinical challenge due to its complex and not yet fully understood pathomechanism, which result in limited analgesic effectiveness of the management offered, particularly for patients with acute, refractory neuropathic pain states. In addition to the introduction of several modern therapeutic approaches, such as neuromodulation or novel anti-neuropathic drugs, significant efforts have been made in the repurposing of well-known substances such as phenytoin. Although its main mechanism of action occurs at sodium channels in excitable and non-excitable cells and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level and how it influences morphine-induced analgesia have not been clarified, both being crucial from a clinical perspective. We demonstrated that single and repeated systemic administrations of phenytoin decreased tactile and thermal hypersensitivity in an animal model of neuropathic pain. Importantly, we observed an increase in the antinociceptive effect on thermal stimuli with repeated administrations of phenytoin. This is the first study to report that phenytoin improves morphine-induced antinociceptive effects and influences microglia/macrophage activity at the spinal cord and dorsal root ganglion levels in a neuropathic pain model. Our findings support the hypothesis that phenytoin may represent an effective strategy for neuropathic pain management in clinical practice, particularly when combination with opioids is needed.
Collapse
Affiliation(s)
- Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Anna Przeklasa-Muszyńska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
3
|
Yeo JH, Roh DH. Dexmedetomidine Co-Administered with Lidocaine Decreases Nociceptive Responses and Trigeminal Fos Expression without Motor Dysfunction and Hypotension in a Murine Orofacial Formalin Model. Life (Basel) 2022; 12:life12020215. [PMID: 35207502 PMCID: PMC8878816 DOI: 10.3390/life12020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Administration of dexmedetomidine significantly induces sedation and anti-nociception in several nociceptive models, but clinical trials are restricted due to adverse side effects, including lethargy, hypotension, and bradycardia. Herein, we investigated whether intraperitoneal inoculation of dexmedetomidine reduced the orofacial nociceptive response and affected motor coordination and blood pressure and examined whether a lower dose of dexmedetomidine in combination with 0.5% lidocaine produced an antinociceptive effect without any adverse side events in a murine model. To perform the experiment, 5% formalin (10 µL) was subcutaneously inoculated into the right upper lip, and the rubbing responses were counted for 45 min. Different doses of dexmedetomidine combined with 0.5% lidocaine were administered 10 and 30 min before formalin injection, respectively. Dexmedetomidine (10 μg/kg) significantly reduced orofacial nociceptive responses during the second phase of the formalin test and decreased the expression of Fos in trigeminal nucleus caudalis (TNC). Besides, a high dose of dexmedetomidine (30 μg/kg) induced lessening physical ability and significantly reduced systolic pressure and heart rate. When 0.5% lidocaine was injected subcutaneously, nociceptive responses were reduced only in the first phase. Interestingly, although a low dose of dexmedetomidine (3 μg/kg) alone did not show an antinociceptive effect, its co-administration with lidocaine significantly reduced the nociceptive response in both phases and decreased TNC Fos expression without motor dysfunction and hypotension. This finding suggests that the combination of a low-dose of systemic dexmedetomidine with lidocaine may be a safe medicinal approach for acute inflammatory pain management in the orofacial region, particularly mucogingival pain.
Collapse
|
4
|
Niiro A, Ohno SN, Yamagata KA, Yamagata K, Tomita K, Kuramoto E, Oda Y, Nakamura TJ, Nakamura W, Sugimura M. Diurnal Variation in Trigeminal Pain Sensitivity in Mice. Front Neurosci 2021; 15:703440. [PMID: 34408624 PMCID: PMC8365185 DOI: 10.3389/fnins.2021.703440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Management of time and circadian disruption is an extremely important factor in basic research on pain and analgesia. Although pain is known to vary throughout the day, the mechanism underlying this circadian variation remains largely unknown. In this study, we hypothesized that the process of pain transmission to the central nervous system (after receiving nociceptive stimuli from outside the body) would show day-night differences. Ten-week-old male mice were kept under a strict 12/12-h light/dark cycle for at least 10 days. Formalin was then injected into the second branch region of the trigeminal nerve and the duration of pain-related behaviors (PRBs) was assessed. Immunohistochemical staining was then performed, and the c-Fos-immunopositive cells in the trigeminal spinal tract subnucleus caudalis (Sp5C) were counted. The results showed that the duration of PRBs was longer and the number of c-Fos immunopositive cells in the Sp5C was higher at nighttime than during the day. In addition, the trigeminal ganglia (TG) were extracted from the mice and examined by quantitative real-time PCR to evaluate the daytime and nighttime expression of nociceptive receptors. The results showed that the mRNA expression of transient receptor potential ankyrin 1 in the TG was significantly higher at night than during the day. These results suggest that pain in the trigeminal nerve region is more intense at nighttime, when rodents are active, than during the daytime, partly due to differences in nociceptor expression.
Collapse
Affiliation(s)
- Ayako Niiro
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi N Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kanae A Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuaki Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiaki Oda
- Unit of Basic Medical Sciences, Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Wataru Nakamura
- Unit of Basic Medical Sciences, Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Yeo JH, Kim SJ, Roh DH. Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:365-374. [PMID: 34187953 PMCID: PMC8255123 DOI: 10.4196/kjpp.2021.25.4.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022]
Abstract
The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 µl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.
Collapse
Affiliation(s)
- Ji-Hee Yeo
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Sol-Ji Kim
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
6
|
Silva JC, de Moraes Alcantara LF, Dias Soares JM, e Silva MG, de Lavor ÉM, Andrade VM, dos Passos Menezes P, de Souza Araújo AA, Leite LHI, de Menezes IRA, Scotti L, Scotti MT, Oliveira RC, Quintans JS, Silva Almeida JRG, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with farnesol, an acyclic sesquiterpene alcohol, produces orofacial antinociceptive profile in experimental protocols. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Rizzi A, Ruzza C, Bianco S, Trapella C, Calo' G. Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test. Peptides 2017; 94:71-77. [PMID: 28697954 DOI: 10.1016/j.peptides.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) modulates several biological functions, including pain transmission via selective activation of a specific receptor named NOP. The aim of this study was the investigation of the antinociceptive properties of NOP agonists and their interaction with opioids in the trigeminal territory. The orofacial formalin (OFF) test in mice was used to investigate the antinociceptive potential associated to the activation of NOP and opioid receptors. Mice subjected to OFF test displayed the typical biphasic nociceptive response and sensitivity to opioid and NSAID drugs. Mice knockout for the NOP gene displayed a robust pronociceptive phenotype. The NOP selective agonist Ro 65-6570 (0.1-1mgkg-1) and morphine (0.1-10mgkg-1) elicited dose dependent antinociceptive effects in the OFF with the alkaloid showing larger effects; the isobologram analysis of their actions demonstrated an additive type of interaction. The mixed NOP/opioid receptor agonist cebranopadol elicited potent (0.01-0.1mgkg-1) and robust antinociceptive effects. In the investigated dose range, all drugs did not modify the motor performance of the mice in the rotarod test. Collectively the results of this study demonstrated that selective NOP agonists and particularly mixed NOP/opioid agonists are worthy of development as innovative drugs to treat painful conditions of the trigeminal territory.
Collapse
Affiliation(s)
- A Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - C Ruzza
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - S Bianco
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - C Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - G Calo'
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
8
|
Lyons DN, Kniffin TC, Zhang LP, Danaher RJ, Miller CS, Bocanegra JL, Carlson CR, Westlund KN. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors. Neuroscience 2015; 295:126-38. [PMID: 25818051 DOI: 10.1016/j.neuroscience.2015.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model.
Collapse
Affiliation(s)
- D N Lyons
- Department of Physiology, University of Kentucky, United States
| | - T C Kniffin
- Department of Psychology, University of Kentucky, United States
| | - L P Zhang
- Department of Physiology, University of Kentucky, United States
| | - R J Danaher
- Departmentof Oral Health Practice, University of Kentucky, United States
| | - C S Miller
- Departmentof Oral Health Practice, University of Kentucky, United States
| | - J L Bocanegra
- Departmentof Oral Health Practice, University of Kentucky, United States
| | - C R Carlson
- Department of Psychology, University of Kentucky, United States
| | - K N Westlund
- Department of Physiology, University of Kentucky, United States.
| |
Collapse
|
9
|
Tzabazis AZ, Klukinov M, Feliciano DP, Wilson SP, Yeomans DC. Gene therapy for trigeminal pain in mice. Gene Ther 2014; 21:422-6. [PMID: 24572785 PMCID: PMC3975690 DOI: 10.1038/gt.2014.14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/09/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
The aim of this study was to test the efficacy of a single direct injection of viral vector encoding for encephalin to induce a widespread expression of the transgene and potential analgesic effect in trigeminal behavioral pain models in mice. After direct injection of HSV-1 based vectors encoding for human preproenkephalin (SHPE) or the lacZ reporter gene (SHZ.1, control virus) into the trigeminal ganglia in mice, we performed an orofacial formalin test and assessed the cumulative nociceptive behavior at different time points after injection of the viral vectors. We observed an analgesic effect on nociceptive behavior that lasted up to 8 weeks after a single injection of SHPE into the trigeminal ganglia. Control virus injected animals showed nociceptive behavior similar to naïve mice. The analgesic effect of SHPE injection was reversed/attenuated by subcutaneous naloxone injections, a μ-opioid receptor antagonist. SHPE injected mice also showed normalization in withdrawal latencies upon thermal noxious stimulation of inflamed ears after subdermal complete Freund’s adjuvans injection indicating widespread expression of the transgene. Quantitative immunohistochemistry of trigeminal ganglia showed expression of human preproenkephalin after SHPE injection. Direct injection of viral vectors proved to be useful for exploring the distinct pathophysiology of the trigeminal system and could also be an interesting addition to the pain therapists’ armamentarium.
Collapse
Affiliation(s)
- A Z Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D P Feliciano
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - S P Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Prochazkova M, Terse A, Amin ND, Hall B, Utreras E, Pant HC, Kulkarni AB. Activation of cyclin-dependent kinase 5 mediates orofacial mechanical hyperalgesia. Mol Pain 2013; 9:66. [PMID: 24359609 PMCID: PMC3882292 DOI: 10.1186/1744-8069-9-66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/17/2013] [Indexed: 11/23/2022] Open
Abstract
Background Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity. Results Mice overexpressing or lacking p35, an activator of Cdk5, showed altered phenotype in response to noxious mechanical stimulation in the trigeminal area. Mice with increased Cdk5 activity displayed aversive behavior to mechanical stimulation as indicated by a significant decrease in reward licking events and licking time. The number of reward licking/facial contact events was significantly decreased in these mice as the mechanical intensity increased. By contrast, mice deficient in Cdk5 activity displayed mechanical hypoalgesia. Conclusions Collectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Krzyzanowska A, Avendaño C. Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain. Brain Behav 2012; 2:678-97. [PMID: 23139912 PMCID: PMC3489819 DOI: 10.1002/brb3.85] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/12/2022] Open
Abstract
Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Medical School Madrid, Spain
| | | |
Collapse
|