1
|
McIlvried LA, Martel Matos AA, Yuan MM, Atherton MA, Obuekwe F, Nilsen ML, Nikpoor AR, Talbot S, Bruno TC, Taggart DN, Johnson LK, Ferris RL, P Zandberg D, Scheff NN. Morphine treatment restricts response to immunotherapy in oral squamous cell carcinoma. J Immunother Cancer 2024; 12:e009962. [PMID: 39551606 PMCID: PMC11574397 DOI: 10.1136/jitc-2024-009962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are becoming the standard of care for recurrent and metastatic cancer. Opioids, the primary treatment for cancer-related pain, are immunosuppressive raising concerns about their potential to interfere with the efficacy of ICIs. We hypothesize that exogenous opioids given for analgesia suppress antitumor immunity via T cell-mediated mu opioid receptor 1 (OPRM1) signaling. METHODS In silico bioinformatics were used to assess OPRM1 receptor expression on tumor-infiltrating immune cells in patients with head and neck squamous cell carcinoma (HNSCC) and across different cancer types. A syngeneic orthotopic mouse model of oral squamous cell carcinoma was used to study the impact of morphine and OPRM1 antagonism on tumor-infiltrating immune cells, tumor growth and antitumor efficacy of anti-Programmed cell death protein 1 (PD-1) monoclonal antibody treatment. RESULTS In patients with HNSCC, OPRM1 expression was most abundant in CD8+ T cells, particularly in patients who had not been prescribed opioids prior to resection and exhibited increased expression of exhaustion markers. Exogenous morphine treatment in tumor-bearing mice reduced CD4+ and CD8+ T-cell infiltration and subsequently anti-PD1 ICI efficacy. Peripherally acting mu opioid receptor antagonism, when administered in the adjunctive setting, was able to block morphine-induced immunosuppression and recover the antitumor efficacy of anti-PD1. CONCLUSIONS These findings suggest that morphine acts via a peripheral OPRM1-mediated mechanism to suppress CD8+ T cells, thereby fostering a pro-tumor-impaired immune response. Importantly, peripherally-restricted OPRM1 antagonism can effectively block this morphine-induced immunosuppression while still allowing for centrally-mediated analgesia, indicating a potential therapeutic strategy for mitigating the adverse effects of opioid pain relief in cancer treatment.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andre A Martel Matos
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mona M Yuan
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Megan A Atherton
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fendi Obuekwe
- Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marci L Nilsen
- Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amin Reza Nikpoor
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Tullia C Bruno
- Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | | | | | - Robert L Ferris
- Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Dan P Zandberg
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Nicole N Scheff
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Mastrolonardo EV, Mann DS, Sethi HK, Yun BH, Sina EM, Armache M, Worster B, Fundakowski CE, Mady LJ. Perioperative opioids and survival outcomes in resectable head and neck cancer: A systematic review. Cancer Med 2023; 12:18882-18888. [PMID: 37706634 PMCID: PMC10557889 DOI: 10.1002/cam4.6524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Opioids are a mainstay in pain control for oncologic surgery. The objective of this systematic review is to evaluate the associations of perioperative opioid use with overall survival (OS) and disease-free survival (DFS) in patients with resectable head and neck cancer (HNC). METHODS A systematic review of PubMed, SCOPUS, and CINAHL between 2000 and 2022 was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies investigating perioperative opioid use for patients with HNC undergoing surgical resection and its association with OS and DFS were included. RESULTS Three thousand three hundred seventy-eight studies met initial inclusion criteria, and three studies representing 562 patients (intraoperative opioids, n = 463; postoperative opioids, n = 99) met final exclusion criteria. One study identified that high intraoperative opioid requirement in oral cancer surgery was associated with decreased OS (HR = 1.77, 95% CI 0.995-3.149) but was not an independent predictor of decreased DFS. Another study found that increased intraoperative opioid requirements in treating laryngeal cancer was demonstrated to have a weak but statistically significant inverse relationship with DFS (HR = 1.001, p = 0.02) and OS (HR = 1.001, p = 0.02). The last study identified that patients with chronic opioid after resection of oral cavity cancer had decreased DFS (HR = 2.7, 95% CI 1.1-6.6) compared to those who were not chronically using opioids postoperatively. CONCLUSION An association may exist between perioperative opioid use and OS and DFS in patients with resectable HNC. Additional investigation is required to further delineate this relationship and promote appropriate stewardship of opioid use with adjunctive nonopioid analgesic regimens.
Collapse
Affiliation(s)
- Eric V. Mastrolonardo
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPennsylvaniaUSA
| | - Derek S. Mann
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPennsylvaniaUSA
| | - Harleen K. Sethi
- Department of Otolaryngology – Head and Neck SurgeryPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | - Bo H. Yun
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPennsylvaniaUSA
| | - Elliott M. Sina
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPennsylvaniaUSA
| | - Maria Armache
- Department of Otolaryngology – Head and Neck SurgeryThe Johns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Brooke Worster
- Department of Hospice and Palliative CareThomas Jefferson University HospitalPhiladelphiaPennsylvaniaUSA
| | - Christopher E. Fundakowski
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPennsylvaniaUSA
| | - Leila J. Mady
- Department of Otolaryngology – Head and Neck SurgeryThe Johns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Kolli U, Roy S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front Microbiol 2023; 14:1233194. [PMID: 37670983 PMCID: PMC10475585 DOI: 10.3389/fmicb.2023.1233194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.
Collapse
Affiliation(s)
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Agulló L, Muriel J, Margarit C, Escorial M, Garcia D, Herrero MJ, Hervás D, Sandoval J, Peiró AM. Sex Differences in Opioid Response Linked to OPRM1 and COMT genes DNA Methylation/Genotypes Changes in Patients with Chronic Pain. J Clin Med 2023; 12:jcm12103449. [PMID: 37240556 DOI: 10.3390/jcm12103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Analgesic-response variability in chronic noncancer pain (CNCP) has been reported due to several biological and environmental factors. This study was undertaken to explore sex differences linked to OPRM1 and COMT DNA methylation changes and genetic variants in analgesic response. A retrospective study with 250 real-world CNCP outpatients was performed in which data from demographic, clinical, and pharmacological variables were collected. DNA methylation levels (CpG island) were evaluated by pyrosequencing, and their interaction with the OPRM1 (A118G) and COMT (G472A) gene polymorphisms was studied. A priori-planned statistical analyses were conducted to compare responses between females and males. Sex-differential OPRM1 DNA methylation was observed to be linked to lower opioid use disorder (OUD) cases for females (p = 0.006). Patients with lower OPRM1 DNA methylation and the presence of the mutant G-allele reduced opioid dose requirements (p = 0.001), equal for both sexes. Moreover, COMT DNA methylation levels were negatively related to pain relief (p = 0.020), quality of life (p = 0.046), and some adverse events (probability > 90%) such as constipation, insomnia, or nervousness. Females were, significantly, 5 years older with high anxiety levels and a different side-effects distribution than males. The analyses demonstrated significant differences between females and males related to OPRM1 signalling efficiency and OUD, with a genetic-epigenetic interaction in opioid requirements. These findings support the importance of sex as a biological variable to be factored into chronic pain-management studies.
Collapse
Affiliation(s)
- Laura Agulló
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Javier Muriel
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
| | - César Margarit
- Pain Unit, Department of Health of Alicante, Dr. Balmis General University Hospital, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Mónica Escorial
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Diana Garcia
- Epigenomics Core Facility, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - María José Herrero
- Pharmacogenetics Unit, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - David Hervás
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Juan Sandoval
- Epigenomics Core Facility, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Ana M Peiró
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
6
|
Cata JP, Uhelski ML, Gorur A, Bhoir S, Ilsin N, Dougherty PM. The µ-Opioid Receptor in Cancer and Its Role in Perineural Invasion: A Short Review and New Evidence. Adv Biol (Weinh) 2022; 6:e2200020. [PMID: 35531616 DOI: 10.1002/adbi.202200020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer is a significant public health problem worldwide. While there has been a steady decrease in the cancer death rate over the last two decades, the number of survivors has increased and, thus, cancer-related sequela. Pain affects the life of patients with cancer and survivors. Prescription opioids continue as the analgesic of choice to treat moderate-to-severe cancer-related pain. There has been controversy on whether opioids impact cancer progression by acting on cancer cells or the tumor microenvironment. The μ-opioid receptor is the site of action of prescription opioids. This receptor can participate in an important mechanism of cancer spread, such as perineural invasion. In this review, current evidence on the role of the μ-opioid receptor in cancer growth is summarized and preliminary evidence about its effect on the cross-talk between sensory neurons and malignant cells is provided.
Collapse
Affiliation(s)
- Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, 77030, USA
| | - Megan L Uhelski
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Gorur
- Department of Investigational Cancer Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Siddhant Bhoir
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nisa Ilsin
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Rice University, Houston, TX, 77005, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Xing M, Deng M, Shi Y, Dai J, Ding T, Song Z, Zou W. Identification and characterization of N6-methyladenosine circular RNAs in the spinal cord of morphine-tolerant rats. Front Neurosci 2022; 16:967768. [PMID: 35992914 PMCID: PMC9388936 DOI: 10.3389/fnins.2022.967768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Morphine tolerance (MT) is a tricky problem, the mechanism of it is currently unknown. Circular RNAs (circRNAs) serve significant functions in the biological processes (BPs) of the central nervous system. N6-methyladenosine (m6A), as a key post-transcriptional modification of RNA, can regulate the metabolism and functions of circRNAs. Here we explore the patterns of m6A-methylation of circRNAs in the spinal cord of morphine-tolerant rats. In brief, we constructed a morphine-tolerant rat model, performed m6A epitranscriptomic microarray using RNA samples collected from the spinal cords of morphine-tolerant rats and normal saline rats, and implemented the bioinformatics analysis. In the spinal cord of morphine-tolerant rats, 120 circRNAs with different m6A modifications were identified, 54 of which were hypermethylated and 66 of which were hypomethylated. Functional analysis of these m6A circRNAs found some important pathways involved in the pathogenesis of MT, such as the calcium signaling pathway. In the m6A circRNA-miRNA networks, several critical miRNAs that participated in the occurrence and development of MT were discovered to bind to these m6A circRNAs, such as miR-873a-5p, miR-103-1-5p, miR-107-5p. M6A modification of circRNAs may be involved in the pathogenesis of MT. These findings may lead to new insights into the epigenetic etiology and pathology of MT.
Collapse
Affiliation(s)
- Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yufei Shi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiajia Dai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Tong Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wangyuan Zou,
| |
Collapse
|
8
|
Ye Y, Jensen DD, Viet CT, Pan HL, Campana WM, Amit M, Boada MD. Advances in Head and Neck Cancer Pain. J Dent Res 2022; 101:1025-1033. [PMID: 35416080 PMCID: PMC9305840 DOI: 10.1177/00220345221088527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) affects over 890,000 people annually worldwide and has a mortality rate of 50%. Aside from poor survival, HNC pain impairs eating, drinking, and talking in patients, severely reducing quality of life. Different pain phenotype in patients (allodynia, hyperalgesia, and spontaneous pain) results from a combination of anatomical, histopathological, and molecular differences between cancers. Poor pathologic features (e.g., perineural invasion, lymph node metastasis) are associated with increased pain. The use of syngeneic/immunocompetent animal models, as well as a new mouse model of perineural invasion, provides novel insights into the pathobiology of HNC pain. Glial and immune modulation of the tumor microenvironment affect not only cancer progression but also pain signaling. For example, Schwann cells promote cancer cell proliferation, migration, and secretion of nociceptive mediators, whereas neutrophils are implicated in sex differences in pain in animal models of HNC. Emerging evidence supports the existence of a functional loop of cross-activation between the tumor microenvironment and peripheral nerves, mediated by a molecular exchange of bioactive contents (pronociceptive and protumorigenic) via paracrine and autocrine signaling. Brain-derived neurotrophic factor, tumor necrosis factor α, legumain, cathepsin S, and A disintegrin and metalloprotease 17 expressed in the HNC microenvironment have recently been shown to promote HNC pain, further highlighting the importance of proinflammatory cytokines, neurotrophic factors, and proteases in mediating HNC-associated pain. Pronociceptive mediators, together with nerve injury, cause nociceptor hypersensitivity. Oncogenic, pronociceptive mediators packaged in cancer cell-derived exosomes also induce nociception in mice. In addition to increased production of pronociceptive mediators, HNC is accompanied by a dampened endogenous antinociception system (e.g., downregulation of resolvins and µ-opioid receptor expression). Resolvin treatment or gene delivery of µ-opioid receptors provides pain relief in preclinical HNC models. Collectively, recent studies suggest that pain and HNC progression share converging mechanisms that can be targeted for cancer treatment and pain management.
Collapse
Affiliation(s)
- Y Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - D D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - C T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - H L Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W M Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, USA.,San Diego Veterans Health System, San Diego, CA, USA
| | - M Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Gonçalves S, Gowler PR, Woodhams SG, Turnbull J, Hathway G, Chapman V. The challenges of treating osteoarthritis pain and opportunities for novel peripherally directed therapeutic strategies. Neuropharmacology 2022; 213:109075. [DOI: 10.1016/j.neuropharm.2022.109075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
10
|
Li L, Li S, Qin S, Gao Y, Wang C, Du J, Zhang N, Chen Y, Han Z, Yu Y, Wang F, Zhao Y. Diet, Sports, and Psychological Stress as Modulators of Breast Cancer Risk: Focus on OPRM1 Methylation. Front Nutr 2022; 8:747964. [PMID: 35024367 PMCID: PMC8744450 DOI: 10.3389/fnut.2021.747964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
Background: DNA methylation is influenced by environmental factors and contributes to adverse modification of cancer risk and clinicopathological features. Methods: A case-control study (402 newly diagnosed cases, 470 controls) was conducted to evaluate the effect of environmental factors and OPRM1 methylation in peripheral blood leukocyte (PBL) DNA on the risk of breast cancer. A case-only study (373 cases) was designed to evaluate the effects of environmental factors on OPRM1 methylation in tumor tissue and the relationship of methylation with clinicopathological features. Results: We found a significant association between hypermethylation of OPRM1 and the risk of breast cancer (OR = 1.914, 95%CI = 1.357–2.777). OPRM1 hypermethylation in PBL DNA combined with low intake of vegetable, garlic, soybean, poultry, and milk; high pork intake; less regular sports and a high psychological stress index significantly increased the risk of breast cancer. Soybean intake (OR = 0.425, 95%CI: 0.231–0.781) and regular sports (OR = 0.624, 95%CI: 0.399–0.976) were associated with OPRM1 hypermethylation in tumor DNA. OPRM1 hypermethylation in tumor tissue was correlated with estrogen receptor (ER) (OR = 1.945, 95%CI: 1.262–2.996) and progesterone receptor (PR) (OR = 1.611, 95%CI: 1.069–2.427) negative status; in addition, OPRM1 hypermethylation in PBL DNA was associated with human epidermal growth factor receptor 2 (HER-2) negative status (OR = 3.673, 95%CI: 1.411–9.564). Conclusion: A healthy diet, psychosocial adaptability, and regular sports are very beneficial for breast cancer prevention and progress, especially for OPRM1 hypermethylation carriers. Personalized treatment considering the correlation between OPRM1 hypermethylation and ER and PR status may provide a novel benefit for breast cancer patients.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuo Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Shidong Qin
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinghang Du
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Nannan Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yanbo Chen
- The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yue Yu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, Gueven N, Dietis N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals (Basel) 2021; 14:1091. [PMID: 34832873 PMCID: PMC8620360 DOI: 10.3390/ph14111091] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Craig M. Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus;
| |
Collapse
|
12
|
Wu LX, Dong YP, Zhu QM, Zhang B, Ai BL, Yan T, Zhang GH, Sun L. Effects of dezocine on morphine tolerance and opioid receptor expression in a rat model of bone cancer pain. BMC Cancer 2021; 21:1128. [PMID: 34670518 PMCID: PMC8529774 DOI: 10.1186/s12885-021-08850-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Clinically, the coadministration of opioids to enhance antinociception and decrease tolerance has attracted increasing research attention. We investigated the effects of dezocine, a mu- and kappa-opioid receptor agonist/antagonist, on morphine tolerance and explored the involvement of opioid receptor expression in a rat model of bone cancer pain. METHODS Thermal nociceptive thresholds were measured after the subcutaneous injection of morphine (10 mg/kg) alone or combined with dezocine (10 or 1 mg/kg) for 7 consecutive days. Real-time PCR and western blot analysis were used to examine opioid receptor expression in the periaqueductal gray (PAG) and spinal cord. RESULTS The analgesic effect was significantly decreased after 4 days of morphine administration. We observed that low-dose dezocine significantly attenuated morphine tolerance without reducing the analgesic effect of morphine. Low-dose dezocine coadministration significantly reversed the downregulated expression of mu (MOR) and delta (DOR) opioid receptors in the PAG and the upregulated expression of kappa (KOR) and DOR in the spinal cord induced by morphine. Moreover, low-dose dezocine coadministered with morphine significantly inhibited KOR expression in both the PAG and spinal cord. CONCLUSIONS The combination of low-dose dezocine with morphine may prevent or delay the development of morphine tolerance in a rat model of bone cancer pain. The regulation of opioid receptor expression in the PAG and spinal cord may be part of the mechanism.
Collapse
MESH Headings
- Animals
- Female
- Rats
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Bone Neoplasms/complications
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cancer Pain/drug therapy
- Cancer Pain/metabolism
- Cell Line, Tumor
- Down-Regulation/drug effects
- Drug Interactions
- Drug Therapy, Combination/methods
- Drug Tolerance
- Hot Temperature
- Hyperalgesia/physiopathology
- Morphine/administration & dosage
- Morphine/pharmacology
- Pain Measurement/drug effects
- Pain Threshold
- Periaqueductal Gray/metabolism
- Rats, Wistar
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Spinal Cord/metabolism
- Tetrahydronaphthalenes/administration & dosage
- Tetrahydronaphthalenes/pharmacology
- Up-Regulation/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan-Peng Dong
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian-Mei Zhu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo-Lun Ai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guo-Hua Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518100, China.
| |
Collapse
|
13
|
Heil J, Zajic S, Albertson E, Brangan A, Jones I, Roberts W, Sabia M, Bodofsky E, Resch A, Rafeq R, Haroz R, Buono R, Ferraro TN, Scheinfeldt L, Salzman M, Baston K. The Genomics of Opioid Addiction Longitudinal Study (GOALS): study design for a prospective evaluation of genetic and non-genetic factors for development of and recovery from opioid use disorder. BMC Med Genomics 2021; 14:16. [PMID: 33413350 PMCID: PMC7792024 DOI: 10.1186/s12920-020-00837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The opioid use disorder and overdose crisis in the United States affects public health as well as social and economic welfare. While several genetic and non-genetic risk factors for opioid use disorder have been identified, many of the genetic associations have not been independently replicated, and it is not well understood how these factors interact. This study is designed to evaluate relationships among these factors prospectively to develop future interventions to help prevent or treat opioid use disorder. METHODS The Genomics of Opioid Addiction Longitudinal Study (GOALS) is a prospective observational study assessing the interplay of genetic and non-genetic by collecting comprehensive genetic and non-genetic information on 400 participants receiving medication for opioid use disorder. Participants will be assessed at four time points over 1 year. A saliva sample will be collected for large-scale genetic data analyses. Non-genetic assessments include validated surveys measuring addiction severity, depression, anxiety, and adverse childhood experiences, as well as treatment outcomes such as urine toxicology results, visit frequency, and number of pre and post-treatment overdoses extracted from electronic medical records. DISCUSSION We will use these complex data to investigate the relative contributions of genetic and non-genetic risk factors to opioid use disorder and related treatment outcomes.
Collapse
Affiliation(s)
- Jessica Heil
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Stefan Zajic
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
| | - Emily Albertson
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
| | - Andrew Brangan
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
| | - Iris Jones
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Wendy Roberts
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
| | - Michael Sabia
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Elliot Bodofsky
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Alissa Resch
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
| | - Rachel Rafeq
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Rachel Haroz
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Russell Buono
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
| | | | - Laura Scheinfeldt
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103 USA
| | - Matthew Salzman
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| | - Kaitlan Baston
- Cooper University Health Care, 1 Cooper Plaza, Camden, NJ 08103 USA
| |
Collapse
|
14
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
15
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
16
|
Kringel D, Kaunisto MA, Kalso E, Lötsch J. Machine-learned analysis of global and glial/opioid intersection-related DNA methylation in patients with persistent pain after breast cancer surgery. Clin Epigenetics 2019; 11:167. [PMID: 31775878 PMCID: PMC6881976 DOI: 10.1186/s13148-019-0772-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial cells in the central nervous system play a key role in neuroinflammation and subsequent central sensitization to pain. They are therefore involved in the development of persistent pain. One of the main sites of interaction of the immune system with persistent pain has been identified as neuro-immune crosstalk at the glial-opioid interface. The present study examined a potential association between the DNA methylation of two key players of glial/opioid intersection and persistent postoperative pain. METHODS In a cohort of 140 women who had undergone breast cancer surgery, and were assigned based on a 3-year follow-up to either a persistent or non-persistent pain phenotype, the role of epigenetic regulation of key players in the glial-opioid interface was assessed. The methylation of genes coding for the Toll-like receptor 4 (TLR4) as a major mediator of glial contributions to persistent pain or for the μ-opioid receptor (OPRM1) was analyzed and its association with the pain phenotype was compared with that conferred by global genome-wide DNA methylation assessed via quantification of the methylation in the retrotransposon LINE1. RESULTS Training of machine learning algorithms indicated that the global DNA methylation provided a similar diagnostic accuracy for persistent pain as previously established non-genetic predictors. However, the diagnosis can be based on a single DNA based marker. By contrast, the methylation of TLR4 or OPRM1 genes could not contribute further to the allocation of the patients to the pain-related phenotype groups. CONCLUSIONS While clearly supporting a predictive utility of epigenetic testing, the present analysis cannot provide support for specific epigenetic modulation of persistent postoperative pain via methylation of two key genes of the glial-opioid interface.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Taqi MM, Faisal M, Zaman H. OPRM1 A118G Polymorphisms and Its Role in Opioid Addiction: Implication on Severity and Treatment Approaches. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:361-368. [PMID: 31819591 PMCID: PMC6885558 DOI: 10.2147/pgpm.s198654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
The epidemic of opioid addiction is shaping up as the most serious clinical issues of current times. Opioids have the greatest propensity to develop addiction after first exposure. Molecular, genetic variations, epigenetic alterations, and environmental factors are also implicated in the development of opioid addiction. Genetic and epigenetic variations in candidate genes have been identified for their associations with opioid addiction. OPRM1 nonsynonymous single nucleotide polymorphism rs1799971 (A118G) is the most prominent candidate due to its significant association with onset and treatment of opioid addiction. Marked inter-individual variability in response to available maintenance pharmacotherapies is the common feature observed in individuals with opioid addiction. Several therapies are only effective among subgroups of opioid individuals which indicate that ethnic, environmental factors and genetic polymorphism including rs1799971 may be responsible for the response to treatment. Pharmacogenetics has the potential to enhance our understanding around the underlying genetic, epigenetic and molecular mechanisms responsible for the heterogeneous response of maintenance pharmacotherapies in opioid addiction. A more detailed understanding of molecular, epigenetic and genetic variants especially the implication of OPRM1 A118G polymorphism in an individual may serve as the way forward to address the opioid epidemic. Personalized medicine, which involves developing targeted pharmacotherapies in accordance with individual genetic and epigenetic makeup, are required to develop safe and effective treatments for opioid addiction.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Muhammad Faisal
- Faculty of Health Studies, University of Bradford, Bradford, UK.,Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Hadar Zaman
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
18
|
Abstract
Opioids are very potent and efficacious drugs, traditionally used for both acute and chronic pain conditions. However, the use of opioids is frequently associated with the occurrence of adverse effects or clinical problems. Other than adverse effects and dependence, the development of tolerance is a significant problem, as it requires increased opioid drug doses to achieve the same effect. Mechanisms of opioid tolerance include drug-induced adaptations or allostatic changes at the cellular, circuitry, and system levels. Dose escalation in long-term opioid therapy might cause opioid-induced hyperalgesia (OIH), which is a state of hypersensitivity to painful stimuli associated with opioid therapy, resulting in exacerbation of pain sensation rather than relief of pain. Various strategies may provide extra-opioid analgesia. There are drugs that may produce independent analgesic effects. A tailored treatment provided by skilled personnel, in accordance with the individual condition, is mandatory. Any treatment aimed at reducing opioid consumption may be indicated in these circumstances. Interventional techniques able to decrease the pain input may allow a decrease in the opioid dose, thus reverting the mechanisms producing tolerance of OIH. Intrathecal therapy with local anesthetics and a sympathetic block are the most common techniques utilized in these circumstances.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Main Regional Center of Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, Italy. .,Palliative/Supportive Care and Rehabilitation, MD Anderson, Houston, TX, USA.
| | | | | |
Collapse
|
19
|
Kaye AD, Garcia AJ, Hall OM, Jeha GM, Cramer KD, Granier AL, Kallurkar A, Cornett EM, Urman RD. Update on the pharmacogenomics of pain management. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:125-143. [PMID: 31308726 PMCID: PMC6613192 DOI: 10.2147/pgpm.s179152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Pharmacogenomics is the study of genetic variants that impact drug effects through changes in a drug’s pharmacokinetics and pharmacodynamics. Pharmacogenomics is being integrated into clinical pain management practice because variants in individual genes can be predictive of how a patient may respond to a drug treatment. Pain is subjective and is considered challenging to treat. Furthermore, pain patients do not respond to treatments in the same way, which makes it hard to issue a consistent treatment regimen for all pain conditions. Pharmacogenomics would bring consistency to the subjective nature of pain and could revolutionize the field of pain management by providing personalized medical care tailored to each patient based on their gene variants. Additionally, pharmacogenomics offers a solution to the opioid crisis by identifying potentially opioid-vulnerable patients who could be recommended a nonopioid treatment for their pain condition. The integration of pharmacogenomics into clinical practice creates better and safer healthcare practices for patients. In this article, we provide a comprehensive history of pharmacogenomics and pain management, and focus on up to date information on the pharmacogenomics of pain management, describing genes involved in pain, genes that may reduce or guard against pain and discuss specific pain management drugs and their genetic correlations.
Collapse
Affiliation(s)
- Alan David Kaye
- Department of Anesthesiology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Andrew Jesse Garcia
- Department of Anesthesiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - O Morgan Hall
- Department of Anesthesiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - George M Jeha
- Department of Anesthesiology, LSU Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Kelsey D Cramer
- Department of Anesthesiology, LSU Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Amanda L Granier
- Department of Anesthesiology, LSU Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Anusha Kallurkar
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Abstract
The opioid epidemic is at the epicenter of the drug crisis, resulting in an inconceivable number of overdose deaths and exorbitant associated medical costs that have crippled many communities across the socioeconomic spectrum in the United States. Classic medications for the treatment of opioid use disorder predominantly target the opioid system and thus have been underutilized, in part due to their own potential for abuse and heavy regulatory burden for patients and clinicians. Opioid antagonists are now evolving in their use, not only to prevent acute overdoses but as extended-use treatment options. Strategies that target specific genetic and epigenetic factors, along with novel nonopioid medications, hold promise as future therapeutic interventions for opioid abuse. Success in increasing the treatment options in the clinical toolbox will, hopefully, help to end the historical pattern of recurring opioid epidemics. [AJP at 175: Remembering Our Past As We Envision Our Future Drug Addiction in Relation to Problems of Adolescence Zimmering and colleagues wrote in the midst of an opiate epidemic among young people that "only the human being, or rather certain types of human beings, will return to the enslaving, self-destructive habit." (Am J Psychiatry 1952; 109:272-278 )].
Collapse
Affiliation(s)
- Yasmin L. Hurd
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine, Addiction Institute, Mount Sinai Behavioral Health System, New York
| | - Charles P. O’Brien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Wachman EM, Hayes MJ, Shrestha H, Nikita FNU, Nolin A, Hoyo L, Daigle K, Jones HE, Nielsen DA. Epigenetic variation in OPRM1
gene in opioid-exposed mother-infant dyads. GENES BRAIN AND BEHAVIOR 2018; 17:e12476. [DOI: 10.1111/gbb.12476] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- E. M. Wachman
- Department of Pediatrics; Boston Medical Center; Boston Massachusetts
| | - M. J. Hayes
- Department of Psychology; Graduate School of Biomedical Sciences & Engineering, University of Maine; Orono Maine
| | - H. Shrestha
- Department of Pediatrics; Boston Medical Center; Boston Massachusetts
| | - F. N. U. Nikita
- Boston University School of Public Health; Boston Massachusetts
| | - A. Nolin
- Boston University School of Medicine; Boston Massachusetts
| | - L. Hoyo
- Boston University School of Medicine; Boston Massachusetts
| | - K. Daigle
- Department of Adolescent and Young Adult Medicine; Boston Children's Hospital; Boston Massachusetts
| | - H. E. Jones
- UNC Horizons, Department of Obstetrics and Gynecology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
- Department of Psychiatry and Behavioral Sciences and Obstetrics and Gynecology; School of Medicine, Johns Hopkins University; Baltimore Maryland
- Department of Obstetrics and Gynecology; School of Medicine, Johns Hopkins University; Baltimore Maryland
| | - D. A. Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences; Baylor College of Medicine; Houston Texas
| |
Collapse
|