1
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Kizir D, Karaman M, Ceylan H. Tannic acid may ameliorate doxorubicin-induced changes in oxidative stress parameters in rat spleen. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3605-3613. [PMID: 37272930 DOI: 10.1007/s00210-023-02563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Doxorubicin (DOX) is a potent and broad-spectrum drug widely used in the treatment of cancer. However, the toxicity and side effects of DOX on various organs limit its clinical use. Approaches using natural antioxidants with these drugs have the potential to alleviate negative side effects. The aim of this study was to investigate the potential protective effect of tannic acid, a polyphenolic compound found naturally in plants, against DOX-induced spleen toxicity. Expression levels of Alox5, Inos, IL-6, Tnf-α, Casp-3, Bax, SOD, GST, CAT and GPx genes were determined using cDNAs obtained from spleen tissues of rats treated with DOX, tannic acid and both. In addition, SOD, CAT, GPx and GST enzyme activities, and GSH and MDA levels were measured in tissues. In the spleen tissues, DOX caused a decrease in the level of GSH and an increase in the level of MDA. In addition, it was determined that DOX had a suppressive effect on CAT, GST, SOD and GPx mRNA levels and its enzyme activities, which are antioxidant system components. The mRNA expression levels of proinflammatory cytokine markers, apoptotic genes, and some factors involved in cell metabolism showed a change compared to the control after DOX application. However, as a result of tannic acid treatment with DOX, these changes approached the values of the control group. The findings showed that tannic acid had a protective effect on the changes in the oxidative stress and inflammation system in the rat spleen as a result of the application of tannic acid together with DOX.
Collapse
Affiliation(s)
- Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
Li D, He L, Yuan C, Ai Y, Yang JJ. Peroxisome proliferator-activated receptor gamma agonist pioglitazone alleviates hemorrhage-induced thalamic pain and neuroinflammation. Int Immunopharmacol 2023; 124:110991. [PMID: 37774485 DOI: 10.1016/j.intimp.2023.110991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Thalamic pain frequently occurs after stroke and is a challenging clinical issue. However, the mechanisms underlying thalamic pain remain unclear. Neuroinflammation is a key determining factor in the occurrence and maintenance of hemorrhage-induced thalamic pain. Pioglitazone is an agonist of peroxisome proliferator-activated receptor gamma (PPARγ) and shows anti-inflammatory effects in multiple diseases. The present work focused on exploring whether PPARγ is related to hemorrhage-induced thalamic pain. METHODS Immunostaining was conducted to analyze the cellular localization of PPARγ and co-localization was evaluated with NeuN, ionized calcium-binding adapter molecular 1 (IBA1), and glia fibrillary acidic protein (GFAP). Western blot analyses were used to evaluate MyD88, pNF-κB/NF-κB, pSTAT6/STAT6, IL-1β, TNF-α, iNOS, Arg-1, IL-4, IL-6, and IL-10 expression. Behavioral tests in mice were conducted to evaluate continuous pain hypersensitivity. RESULTS We found that pioglitazone appeared to mitigate the contralateral hemorrhage-induced thalamic pain while inhibiting inflammatory responses. Additionally, Pioglitazone induced phosphorylation of STAT6 and suppressed the phosphorylation NF-κB in our model of thalamic pain. These effects could be partially reversed with the PPARγ antagonist GW9662. CONCLUSION The PPARγ agonist pioglitazone can mitigate mechanical allodynia by suppressing the NF-κB inflammasome while activating the STAT6 signal pathway, which are well-known to be associated with inflammation.
Collapse
Affiliation(s)
- Da Li
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Chang Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China.
| |
Collapse
|
4
|
Li X, Wu Y, Wang H, Li Z, Ding X, Dou C, Hu L, Du G, Wei G. Deciphering the Molecular Mechanism of Escin against Neuropathic Pain: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:3734861. [PMID: 37876856 PMCID: PMC10593550 DOI: 10.1155/2023/3734861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Background Escin is the main active component in Aesculus hippocastanum. It has been demonstrated that escin has anti-inflammatory properties. This study combined the methods of network pharmacology, molecular docking, and molecular dynamics to explore the molecular mechanism of escin against neuropathic pain (NP). Methods The Swiss Target Prediction and the Pharm Mapper database were employed for predicting the targets of escin. Also, the candidate targets of NP were gathered via the databases including Therapeutic Targets, DisGeNet, GeneCards, DrugBank, and OMIM. Subsequently, the network of protein-protein interaction was screened for the key targets by the software Cytoscape 3.8.0. Then, the intersection of these targets was analysed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Additionally, we further investigated the ligand-target interactions by molecular docking and molecular dynamics simulations. Results In total, 94 escin targets were predicted by network pharmacology. Among them, SRC, MMP9, PTGS2, and MAPK1 were the core candidate targets. Subsequently, the analysis of GO and KEGG enrichment revealed that escin affected NP by regulating protein kinase C, MAP kinase, TRP channels, the T-cell receptors signaling pathway, and the TNF signaling pathway. The results of molecular docking and molecular dynamics simulation confirmed that escin not only had a strong binding activity with the four core target proteins but also stably combined in 50 ns. Conclusions Our study revealed that escin acts on the core targets SRC, MMP9, PTGS2, MAPK1, and associated enrichment pathways to alleviate neuronal inflammation and regulate the immune response, thus exerting anti-NP efficacy. This study provided innovative ideas and methods for the promising treatment of escin in relieving NP.
Collapse
Affiliation(s)
- Xi Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yating Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Haoyan Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zaiqi Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xian Ding
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chongyang Dou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lin Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guizhi Du
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Cheng Y, Wu B, Huang J, Chen Y. Research Progress on the Mechanisms of Central Post-Stroke Pain: A Review. Cell Mol Neurobiol 2023; 43:3083-3098. [PMID: 37166685 DOI: 10.1007/s10571-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Central Post-Stroke Pain (CPSP) is a primary sequelae of stroke that can develop in the body part corresponding to the cerebrovascular lesion after stroke, most typically after ischemic stroke but also after hemorrhagic stroke. The pathogenesis of CPSP is currently unknown, and research into its mechanism is ongoing. To summarize current research on the CPSP mechanism and provide guidance for future studies. Use "central post-stroke pain," "stroke AND thalamic pain," "stroke AND neuropathic pain," "post-stroke thalamic pain" as the search term. The search was conducted in the PubMed and China National Knowledge Infrastructure databases, summarizing and classifying the retrieved mechanism studies. The mechanistic studies on CPSP are extensive, and we categorized the included mechanistic studies and summarized them in terms of relevant pathway studies, relevant signals and receptors, relevant neural tissues, and described endoplasmic reticulum stress and other relevant studies, as well as summarized the mechanisms of acupuncture treatment. Studies have shown that the pathogenesis of CPSP involves the entire spinal-thalamo-cortical pathway and that multiple substances in the nervous system are involved in the formation and development of CPSP. Among them, the relevant receptors and signals are the hotspot of research, and the discovery and exploration of different receptors and signals have provided a wide range of therapeutic ideas for CPSP. As a very effective treatment, acupuncture is less studied regarding the analgesic mechanism of CPSP, and further experimental studies are still needed.
Collapse
Affiliation(s)
- Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China.
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Yameng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| |
Collapse
|
6
|
Mohanan AT, Nithya S, Nomier Y, Hassan DA, Jali AM, Qadri M, Machanchery S. Stroke-Induced Central Pain: Overview of the Mechanisms, Management, and Emerging Targets of Central Post-Stroke Pain. Pharmaceuticals (Basel) 2023; 16:1103. [PMID: 37631018 PMCID: PMC10459894 DOI: 10.3390/ph16081103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of stroke plays the foremost role in the genesis of central neuropathic pain. Central post-stroke pain (CPSP) is a central pain arising from a vascular lesion in the central nervous system that elicits somatosensory deficits, often contralateral to stroke lesions. It is expressed as continuous or intermittent pain accompanied by sensory abnormalities like dysesthesia and allodynia. CPSP remains de-emphasized due to the variation in onset and diversity in symptoms, besides the difficulty of distinguishing it from other post-stroke pains, often referred to as a diagnosis of exclusion. Spinothalamic dysfunction, disinhibition of the medial thalamus, and neuronal hyperexcitability combined with deafferentation in thalamocortical regions are the mechanisms underlying central pain, which play a significant role in the pathogenesis of CPSP. The treatment regimen for CPSP seems to be perplexed in nature; however, based on available studies, amitriptyline and lamotrigine are denoted as first-line medications and non-pharmacological choices may be accounted for cases intractable to pharmacotherapy. This review attempts to provide an overview of the mechanisms, existing management approaches, and emerging targets of CPSP. A profound understanding of CPSP aids in optimizing the quality of life among stroke sufferers and facilitates further research to develop newer therapeutic agents for managing CPSP.
Collapse
Affiliation(s)
- Anugeetha Thacheril Mohanan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Sermugapandian Nithya
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, Tamilnadu, India
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Dalin A. Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Shamna Machanchery
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Yang F, Jing JJ, Fu SY, Su XZ, Zhong YL, Chen DS, Wu XZ, Zou YQ. Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats. Mol Neurobiol 2023; 60:2086-2098. [PMID: 36602702 DOI: 10.1007/s12035-022-03184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023]
Abstract
Central post-stroke pain (CPSP) is a highly refractory form of central neuropathic pain that has been poorly studied mechanistically. Recent observations have emphasized the critical role of the spinal dorsal horn in CPSP. However, the underlying mechanisms remain unclear. In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced persistent bilateral mechanical pain hypersensitivity and facilitated the spontaneous pain behaviors evoked by intraplantar bee venom injection. Accompanying CPSP, the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn was significantly increased up to 28 days post-intra-thalamic collagenase microinjection. Intrathecal injection of minocycline and fluorocitrate dramatically reverses the bilateral mechanical pain hypersensitivity. Moreover, intra-thalamic collagenase microinjection dramatically induced the up-regulation of MCP-1 but had no effect on the expression of CCR2 in the bilateral lumbar spinal dorsal horn, and MCP-1 was primarily localized in the neuron. Intrathecal injection of anti-MCP-1 mAb was also able to reverse CPSP and reduce the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn. These findings indicated that spinal MCP-1 contributes to CPSP by mediating the activation of spinal neurons and glial cells following thalamic hemorrhage stroke, which may provide insights into pharmacologic treatment for CPSP.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.,Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Si-Yin Fu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xiu-Zhu Su
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yu-Ling Zhong
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Dong-Sheng Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| |
Collapse
|
8
|
Shi ZM, Jing JJ, Xue ZJ, Chen WJ, Tang YB, Chen DJ, Qi XY, Huang L, Zou YQ, Wu XZ, Yang F. Stellate ganglion block ameliorated central post-stroke pain with comorbid anxiety and depression through inhibiting HIF-1α/NLRP3 signaling following thalamic hemorrhagic stroke. J Neuroinflammation 2023; 20:82. [PMID: 36944982 PMCID: PMC10031944 DOI: 10.1186/s12974-023-02765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Central post-stroke pain (CPSP) is an intractable and disabling central neuropathic pain that severely affects patients' lives, well-being, and socialization abilities. However, CPSP has been poorly studied mechanistically and its treatment remains challenging. Here, we used a rat model of CPSP induced by thalamic hemorrhage to investigate its underlying mechanisms and the effect of stellate ganglion block (SGB) on CPSP and emotional comorbidities. METHODS Thalamic hemorrhage was produced by injecting collagenase IV into the ventral-posterolateral nucleus (VPL) of the right thalamus. The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Behavioral tests were carried out to examine depressive and anxiety-like behaviors including the open field test (OFT), elevated plus maze test (EPMT), novelty-suppressed feeding test (NSFT), and forced swim test (FST). The peri-thalamic lesion tissues were collected for immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA). Genetic knockdown of thalamic hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) with microinjection of HIF-1α siRNA and NLRP3 siRNA into the VPL of thalamus were performed 3 days before collagenase injection into the same regions. Microinjection of lificiguat (YC-1) and MCC950 into the VPL of thalamus were administrated 30 min before the collagenase injection in order to inhibited HIF-1α and NLRP3 pharmacologically. Repetitive right SGB was performed daily for 5 days and laser speckle contrast imaging (LSCI) was conducted to examine cerebral blood flow. RESULTS Thalamic hemorrhage caused persistent mechanical allodynia and anxiety- and depression-like behaviors. Accompanying the persistent mechanical allodynia, the expression of HIF-1α and NLRP3, as well as the activities of microglia and astrocytes in the peri-thalamic lesion sites, were significantly increased. Genetic knockdown of thalamic HIF-1α and NLRP3 significantly attenuated mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. Further studies revealed that intra-thalamic injection of YC-1, or MCC950 significantly suppressed the activation of microglia and astrocytes, the release of pro-inflammatory cytokines, the upregulation of malondialdehyde (MDA), and the downregulation of superoxide dismutase (SOD), as well as mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. In addition, repetitive ipsilateral SGB significantly restored the upregulated HIF-1α/NLRP3 signaling and the hyperactivated microglia and astrocytes following thalamic hemorrhage. The enhanced expression of pro-inflammatory cytokines and the oxidative stress in the peri-thalamic lesion sites were also reversed by SGB. Moreover, LSCI showed that repetitive SGB significantly increased cerebral blood flow following thalamic hemorrhage. Most strikingly, SGB not only prevented, but also reversed the development of mechanical allodynia and anxiety- and depression-like behaviors induced by thalamic hemorrhage. However, pharmacological activation of thalamic HIF-1α and NLRP3 with specific agonists significantly eliminated the therapeutic effects of SGB on mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. CONCLUSION This study demonstrated for the first time that SGB could improve CPSP with comorbid anxiety and depression by increasing cerebral blood flow and inhibiting HIF-1α/NLRP3 inflammatory signaling.
Collapse
Affiliation(s)
- Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Zheng-Jie Xue
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Wen-Jun Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yan-Bin Tang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Du-Juan Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xin-Yi Qi
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Li Huang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
- Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
9
|
Li HL, Lin M, Tan XP, Wang JL. Role of Sensory Pathway Injury in Central Post-Stroke Pain: A Narrative Review of Its Pathogenetic Mechanism. J Pain Res 2023; 16:1333-1343. [PMID: 37101520 PMCID: PMC10124563 DOI: 10.2147/jpr.s399258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Central post-stroke pain (CPSP) is a severe chronic neuropathic pain syndrome that is a direct result of cerebrovascular lesions affecting the central somatosensory system. The pathogenesis of this condition remains unclear owing to its extensive clinical manifestations. Nevertheless, clinical and animal experiments have allowed a comprehensive understanding of the mechanisms underlying CPSP occurrence, based on which different theoretical hypotheses have been proposed. We reviewed and collected the literature and on the mechanisms of CPSP by searching the English literature in PubMed and EMBASE databases for the period 2002-2022. Recent studies have reported that CPSP occurrence is mainly due to post-stroke nerve injury and microglial activation, with an inflammatory response leading to central sensitization and de-inhibition. In addition to the primary injury at the stroke site, peripheral nerves, spinal cord, and brain regions outside the stroke site are involved in the occurrence and development of CPSP. In the present study, we reviewed the mechanism of action of CPSP from both clinical studies and basic research based on its sensory pathway. Through this review, we hope to increase the understanding of the mechanism of CPSP.
Collapse
Affiliation(s)
- Hai-Li Li
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Min Lin
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Xing-Ping Tan
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Correspondence: Jiang-Lin Wang, Pain Department, The Affiliated Hospital of Southwest Medical University, No. 25 Pacific Street, Luzhou, Sichuan Province, 646000, People’s Republic of China, Tel +8618090880626, Fax +86830-3165469, Email
| |
Collapse
|
10
|
Ma Y, Luo J, Wang XQ. The effect and mechanism of exercise for post-stroke pain. Front Mol Neurosci 2022; 15:1074205. [PMID: 36533131 PMCID: PMC9755671 DOI: 10.3389/fnmol.2022.1074205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 08/30/2023] Open
Abstract
One of the common negative effects of a stroke that seriously lowers patients' quality of life is post-stroke pain (PSP). Thus, exercise in PSP management has become a hot research topic. The main advantages of exercise therapy are affordability and ease of acceptance by patients compared to other treatment methods. Therefore, this article reviews the effectiveness and possible mechanisms of exercise interventions for PSP. Exercise training for patients with PSP not only improves physical function but also effectively reduces pain intensity and attenuates the behavioral response to pain. In addition, exercise therapy can improve brain function and modulate levels of pro-inflammatory and neurotrophic factors to exert specific analgesic effects. Potential mechanisms for exercise intervention include modulation of synaptic plasticity in the anterior cingulate gyrus, modulation of endogenous opioids in vivo, reversal of brain-derived neurotrophic factor overexpression, inhibition of purinergic receptor (P2X4R, P2X7R) expression, and inhibition of microglia activation. However, current research on exercise for PSP remains limited, and the sustainable benefits of exercise interventions for PSP need to be further investigated.
Collapse
Affiliation(s)
- Yue Ma
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
11
|
Tumor Necrosis Factor-α: The Next Marker of Stroke. DISEASE MARKERS 2022; 2022:2395269. [PMID: 35265224 PMCID: PMC8898850 DOI: 10.1155/2022/2395269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023]
Abstract
Although there is no shortage of research on the markers for stroke, to our knowledge, there are no clear markers that can meet the needs of clinical prediction and treatment. The inflammatory cascade is a critical process that persists and functions throughout the stroke process, ultimately worsening stroke outcomes and increasing mortality. Numerous inflammatory factors, including tumor necrosis factor (TNF), are involved in this process. These inflammatory factors play a dual role during stroke, and their mechanisms are complex. As one of the representatives, TNF is the primary regulator of the immune system and plays an essential role in the spread of inflammation. In researches done over the last few years, tumor necrosis factor-alpha (TNF-α) has emerged as a potential marker for stroke because of its essential role in stroke. This review summarizes the latest research on TNF-α in stroke and explores its potential as a therapeutic target.
Collapse
|
12
|
MicroRNA-133b-3p targets purinergic P2X4 receptor to regulate central poststroke pain in rats. Neuroscience 2021; 481:60-72. [PMID: 34688806 DOI: 10.1016/j.neuroscience.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Central poststroke pain (CPSP) is a neuropathic pain syndrome that usually occurs after cerebrovascular accidents. Currently, the pathogenesis of CPSP is not fully understood. Purinergic P2X4 receptor (P2X4R) is implicated in neuropathic pain including CPSP. Herein, we demonstrated that the levels of microRNA-133b-3p (miR-133b-3p), which targets P2X4R transcripts, were significantly downregulated in the ventral posterolateral nucleus of the thalamus (VPL), cerebrospinal fluid (CSF), and plasma of CPSP rats. The expression levels of miR-133b-3p negatively correlated with the severity of allodynia. Genetic knockdown of P2X4R in the VPL protected CPSP rats against allodynia. Similarly, genetic overexpression of miR-133b-3p in the VPL reversed the allodynia established in CPSP rats via downregulation of P2X4R expression. Treatment using gabapentin in CPSP rats significantly restored the decreased miR-133b-3p expression in the VPL, CSF, and plasma and blocked allodynia in CPSP rats. The administration of an miR-133b-3p inhibitor into the VPL abolished the antiallodynic activity of gabapentin. This mechanism was associated with P2X4R expression and involved the endogenous opioid system. Human patients with CPSP showed decreased plasma levels of miR-133b-3p compared with those of control participants. Logistic regression analysis of our patient cohort showed that determining plasma levels of miR-133b-3p may be useful for CPSP diagnosis and treatment.
Collapse
|
13
|
Fu X, Zhou G, Wu X, Xu C, Zhou H, Zhuang J, Peng Y, Cao Y, Zeng H, Li Y, Li J, Gao L, Chen G, Wang L, Yan F. Inhibition of P2X4R attenuates white matter injury in mice after intracerebral hemorrhage by regulating microglial phenotypes. J Neuroinflammation 2021; 18:184. [PMID: 34425835 PMCID: PMC8383380 DOI: 10.1186/s12974-021-02239-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. Methods ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. Results After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI. Furthermore, we found that TrkB blockage can reverse the protective effects of WMI as well as neuroprotection after 5-BDBD treatment. This result indicates that P2X4R plays a crucial role in regulating WMI and neuroinflammation and that P2X4R inhibition may benefit patients with ICH. Conclusions Our results demonstrated that P2X4R contributes to WMI by polarizing microglia into a pro-inflammatory phenotype after ICH. Furthermore, the inhibition of P2X4R promoted pro-inflammatory microglia polarization into an anti-inflammatory phenotype, enhanced brain-derived neurotrophic factor (BDNF) production, and through the BDNF/TrkB pathway, attenuated WMI and improved neurological function. Therefore, the regulation of P2X4R activation may be beneficial for the reducing of ICH-induced brain injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02239-3.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Xinyan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Yin Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| |
Collapse
|