1
|
Feng HN, Zhong LQY, Xu CX, Wang TT, Wu H, Wang L, Traub RJ, Chen X, Cao DY. Up-regulation of IL-1β and sPLA2-III in the medial prefrontal cortex contributes to orofacial and somatic hyperalgesia induced by malocclusion via glial-neuron crosstalk. Eur J Pharmacol 2024; 982:176933. [PMID: 39182540 DOI: 10.1016/j.ejphar.2024.176933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The medial prefrontal cortex (mPFC) has been identified as a key brain region involved in the modulation of chronic pain. Our recent study demonstrated that unilateral anterior crossbite (UAC) developed the comorbidity model of temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS), which was characterized by both orofacial and somatic hyperalgesia. In the present study, UAC rats exhibited significant changes in gene expression in the mPFC. Enrichment analysis revealed that the significantly involved pathways were cytokines-cytokine receptor interaction and immune response. The expression of group III secretory phospholipase A2 (sPLA2-III) was significantly increased in the mPFC of UAC rats. Silencing sPLA2-III expression in the mPFC blocked the orofacial and somatic hyperalgesia. Immunofluorescence showed that sPLA2-III was mainly localized in neurons. The expression of interleukin-1β (IL-1β) in the mPFC significantly increased after UAC. Injection of IL-1β antibody into the mPFC blocked orofacial and somatic hyperalgesia. IL-1β was mainly localized in microglia cells. Furthermore, injection of IL-1β antibody significantly reduced the expression of sPLA2-III. These results indicate that neuroinflammatory cascade responses induced by glial-neuron crosstalk in the mPFC may contribute to the development of TMD and FMS comorbidity, and IL-1β and sPLA2-III are identified as novel potential therapeutic targets for the treatment of chronic pain in the comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Hai-Nan Feng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Liang-Qiu-Yue Zhong
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Chen-Xi Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Ting-Ting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Hao Wu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, the UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Xi Chen
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Neural and Pain Sciences, School of Dentistry, the UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Li JH, Zhao SJ, Guo Y, Chen F, Traub RJ, Wei F, Cao DY. Chronic stress induces wide-spread hyperalgesia: The involvement of spinal CCK 1 receptors. Neuropharmacology 2024; 258:110067. [PMID: 38992792 DOI: 10.1016/j.neuropharm.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Chronic primary pain (CPP) occurs in the absence of tissue injury and includes temporomandibular disorders (TMD), fibromyalgia syndrome (FMS) and irritable bowel syndrome (IBS). CPP is commonly considered a stress-related chronic pain and often presents as wide-spread pain or comorbid pain conditions in different regions of the body. However, whether prolonged stress can directly result in the development of CPP comorbidity remains unclear. In the present study, we adapted a 21 day heterotypic stress paradigm in mice and examined whether chronic stress induced wide-spread hyperalgesia, modeling comorbid CPP in the clinic. We found that chronic stress induced anxiety- and depression-like behaviors, and resulted in long-lasting wide-spread hyperalgesia over several body regions such as the orofacial area, hindpaw, thigh, upper back and abdomen in female mice. We further found that the expression of cholecystokinin (CCK)1 receptors was significantly increased in the L4-L5 spinal dorsal horn of the female mice after 14 and 21 day heterotypic stress compared with the control animals. Intrathecal injection of the CCK1 receptor antagonist CR-1505 blocked pain hypersensitivity in the subcervical body including the upper back, thigh, hindpaw and abdomen. These findings suggest that the upregulation of spinal CCK1 receptors after chronic stress contributes to the central mechanisms underlying the development of wide-spread hyperalgesia, and may provide a potential and novel central target for clinical treatment of CPP.
Collapse
Affiliation(s)
- Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Shi-Jie Zhao
- Department of Neurology, The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, 5 Weiyang West Road, Xianyang, Shaanxi, 712046, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Fei Chen
- Department of Neurology, The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, 5 Weiyang West Road, Xianyang, Shaanxi, 712046, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Xu CX, Qiu XY, Guo Y, Xu TM, Traub RJ, Feng HN, Cao DY. Valproate attenuates somatic hyperalgesia induced by orofacial inflammation combined with stress through inhibiting spinal IL-6 and STAT1 phosphorylation. Brain Res Bull 2024; 208:110889. [PMID: 38290590 PMCID: PMC10926348 DOI: 10.1016/j.brainresbull.2024.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS) may present as comorbid conditions, but treatment options are ineffective. The purpose of this study was to investigate whether valproate (VPA) attenuates somatic hyperalgesia induced by orofacial inflammation combined with stress, which represents a model of pain associated with TMD and FMS comorbidity, and to explore the potential mechanisms. The results showed that VPA inhibited somatic hyperalgesia induced by orofacial inflammation combined with stress, and down-regulated the interleukin-6 (IL-6) expression in the L4-L5 spinal dorsal horn of female rats. The anti-nociceptive effect of VPA was blocked by single or 5 consecutive day intrathecal administration of recombinant rat IL-6. Orofacial inflammation combined with stress up-regulated the ratio of phosphorylated signal transducer and activator of transcription 1 (p-STAT1) to STAT1 (p-STAT1/STAT1) in the spinal cord. VPA did not affect the STAT1 expression, while it down-regulated the ratio of p-STAT1/STAT1. The expression of STAT3 and the ratio of p-STAT3/STAT3 were not affected by orofacial inflammation combined with stress and VPA treatment. Intrathecal administration of exogenous IL-6 up-regulated the ratio of p-STAT1/STAT1. These data indicate that VPA attenuated somatic hyperalgesia induced by orofacial inflammation combined with stress via inhibiting spinal IL-6 in female rats, and the mechanism may involve the alteration of activation status of spinal STAT1. Thus, VPA may be a new candidate analgesic that targets IL-6 and STAT1 for the treatment of pain associated with the comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Chen-Xi Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Tian-Ming Xu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Hai-Nan Feng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China; Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
5
|
Bordoni B, Escher AR, Cannadoro G, Tobbi F. The Cognitive and Emotional Aspect in Fibromyalgia: The Importance of the Orofacial Sphere. Cureus 2023; 15:e36380. [PMID: 36945233 PMCID: PMC10025772 DOI: 10.7759/cureus.36380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
Fibromyalgia syndrome (FMS) is a systemic and multifactorial disease of unknown etiology. There are many co-morbidities that the patient presents, making the clinical picture not immediate. Cognitive decline and emotional alteration (anxiety and depression) are found in fibromyalgic patients, as well as temporomandibular joint arthrokinematic disorders, dental malocclusion, and periodontitis. There seems to be a biunivocal relationship between oral and psychiatric dysfunctions in fibromyalgia. The article reviews the information regarding oral health alterations with respect to the patient's cognitive and emotional response, as the most recent information we have raises new hypotheses about the diagnosis of FMS.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | | | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| |
Collapse
|
6
|
Chung MK, Wang S, Alshanqiti I, Hu J, Ro JY. The degeneration-pain relationship in the temporomandibular joint: Current understandings and rodent models. FRONTIERS IN PAIN RESEARCH 2023; 4:1038808. [PMID: 36846071 PMCID: PMC9947567 DOI: 10.3389/fpain.2023.1038808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Temporomandibular disorders (TMD) represent a group of musculoskeletal conditions involving the temporomandibular joints (TMJ), the masticatory muscles and associated structures. Painful TMD are highly prevalent and conditions afflict 4% of US adults annually. TMD include heterogenous musculoskeletal pain conditions, such as myalgia, arthralgia, and myofascial pain. A subpopulations of TMD patients show structural changes in TMJ, including disc displacement or degenerative joint diseases (DJD). DJD is a slowly progressing, degenerative disease of the TMJ characterized by cartilage degradation and subchondral bone remodeling. Patients with DJD often develop pain (TMJ osteoarthritis; TMJ OA), but do not always have pain (TMJ osteoarthrosis). Therefore, pain symptoms are not always associated with altered TMJ structures, which suggests that a causal relationship between TMJ degeneration and pain is unclear. Multiple animal models have been developed for determining altered joint structure and pain phenotypes in response to various TMJ injuries. Rodent models of TMJOA and pain include injections to induce inflammation or cartilage destruction, sustained opening of the oral cavity, surgical resection of the articular disc, transgenic approaches to knockout or overexpress key genes, and an integrative approach with superimposed emotional stress or comorbidities. In rodents, TMJ pain and degeneration occur during partially overlapping time periods in these models, which suggests that common biological factors may mediate TMJ pain and degeneration over different time courses. While substances such as intra-articular pro-inflammatory cytokines commonly cause pain and joint degeneration, it remains unclear whether pain or nociceptive activities are causally associated with structural degeneration of TMJ and whether structural degeneration of TMJ is necessary for producing persistent pain. A thorough understanding of the determining factors of pain-structure relationships of TMJ during the onset, progression, and chronification by adopting novel approaches and models should improve the ability to simultaneously treat TMJ pain and TMJ degeneration.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | | | | | | | | |
Collapse
|