1
|
Sun J, Lian X, Wang L, Duan Z. Development and Application of a Robust Imine-Based Covalent Organic Framework for Stir Bar Sorptive Extraction of Estrogens in Environmental Water. Molecules 2024; 29:5763. [PMID: 39683920 DOI: 10.3390/molecules29235763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
A covalent organic framework (COF) based on imine was synthesized using 2,5-dihexoxyterephthalaldehyde (DHT) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as starting materials. The TAPB-DHT-COF exhibited satisfactory chemical stability, making it a promising adsorbing material for stir bar sorptive extraction (SBSE) of four estrogens, including estrone (E1), β-estradiol (E2), hexestrol (HES), and mestranol (MeEE2), in ambient water samples. The extracted analytes were subsequently analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD). A series of parameters affecting the SBSE process, such as solution pH, ionic strength, extraction time, and desorption solvent, were investigated by the controlled variable method. Under optimal conditions, the limit of detection (LODs) for the four targeted estrogens ranged from 0.06 to 0.15 µg/L, with a linear range from 0.2 to 100 µg/L. The observed enrichment factor (EF) ranged from 39 to 49, while the theoretical EF was estimated to be 50-fold. This methodology can be applied to the identification of estrogens in three environmental water samples.
Collapse
Affiliation(s)
- Jianing Sun
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xixi Lian
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Lianzhi Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Zhengchao Duan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
2
|
Pinto A, da Silva DC, Cardoso A, Fernandes F, Soares C, Valentão P, Fidalgo F, Teixeira J. Progesterone and brassinosteroids synergistically enhance progesterone removal and antioxidant capacity of Solanum nigrum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1353-1362. [PMID: 39184558 PMCID: PMC11341505 DOI: 10.1007/s12298-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
Progesterone (PROG) has been detected at various concentrations in the environment and has adverse effects on humans and wildlife. This work evaluated the impact of PROG in Solanum nigrum L. plants, its removal capacity, and how 2,4-epibrassinolide (24-EBL) affects this process. Three treatments were used: (1) control, (2) irrigation with 0.8 µM PROG, and (3) treatment with 0.8 µM PROG after a pre-treatment with a foliar application of 1 µM 2,4-EBL (PROG/24EBL). After 20 days of treatment, no PROG was detected in the nutrient solution or plant tissues, indicating that the PROG was removed and metabolized. Lipid peroxidation significantly decreased in response to PROG in shoots and roots, and this effect was even more significant for both organs of the PROG/24EBL plants. Additionally, both treatments in both organs showed a decrease in H2O2 levels, and both steroid hormones increased the plants' antioxidant system at both the biochemical and gene expression levels. In conclusion, S. nigrum can swiftly remove PROG without affecting its growth, and the use of 24-EBL synergistically decreases oxidative damage by increasing the activity of the antioxidant system and enhancing plant PROG removal ability.
Collapse
Affiliation(s)
- Ana Pinto
- GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável – Inov4Agro & Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Daniela Correia da Silva
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana Cardoso
- GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável – Inov4Agro & Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Fernandes
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável – Inov4Agro & Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável – Inov4Agro & Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Jorge Teixeira
- GreenUPorto – Centro de Investigação em Produção Agroalimentar Sustentável – Inov4Agro & Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Dep° de Biologia, Faculdade de Ciências da Universidade do Porto, Edifício FC4. Rua do Campo Alegre, S/N. 4169-007, Porto, Portugal
| |
Collapse
|
3
|
Ghanbarzadeh M, Ghaffarinejad A, Shahdost-Fard F. A nitrogen-doped hollow carbon nanospheres-based aptasensor for non-invasive salivary detection of progesterone. Talanta 2024; 273:125927. [PMID: 38521026 DOI: 10.1016/j.talanta.2024.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Developing an easy-to-use and non-invasive sensor for monitoring progesterone (P4) as a multi-functional hormone is highly demanded for point-of-care testing. In this study, an ultrasensitive electrochemical aptasensor is fabricated for monitoring P4 in human biofluids. The sensing interface was designed based on the porous nitrogen-doped hollow carbon spheres (N-HCSs). The N-HCSs covalently immobilized high-dense aptamer (Apt) sequences as the bioreceptor of P4. The electron transfer of the redox probe was hindered by incubating P4 on the aptasensor surface and forming the P4-Apt complexes. Meanwhile, the signaling was decreased under two wide linear dynamic ranges (LDRs) from 10 fM to 5.6 μM with a limit of detection (LOD) value of 3.33 fM. The aptasensor presented satisfactory selectivity in the presence of different off-target species with successful feasibility for P4 detection in some human urine and saliva samples. The aptasensor with high sensitivity, as an advantage for on-site and sensitive measurement of P4, can be considered a non-invasive tool for routine analysis of real-world clinical samples method.
Collapse
Affiliation(s)
- Mahsa Ghanbarzadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
4
|
Zeng W, Wang K, Zhou Y, Deng X, Xu R, Chen W. Determination of diethylstilbestrol in environmental water based on electrochemical senser modified with vanadium based metal organic framework material composite. NANOTECHNOLOGY 2024; 35:245501. [PMID: 38529942 DOI: 10.1088/1361-6528/ad321d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
In this research, the MIL-47/ACET/Nafion/GCE electrochemical senser for the determination of diethylstilbestrol (DES) was prepared with vanadyl sulfate (VOSO4·nH2O) and terephthalic acid (H2BDC) as the main raw materials, compounded with acetylene black (ACET) and perfluorosulfonic acid polymer (Nafion). The compound DES belongs to the category of estrogens, and prolonged exposure to the environment can have detrimental effects on the physiological functioning of both humans and animals. Due to the strong DES enrichment performance of MIL-47(V-MOFs) with large specific surface area, in addition to the excellent conductivity and electrocatalysis of composite materials, this modified senser had good electrochemical response to DES. With differential pulse voltammetry, in optimum condition of 0.1 M NaH2PO4-Na2HPO4at pH = 7.0, potential interval of -1.0 to 1.0 V, enrichment time of 120 s and enrichment potential of 0.2 V, there was a good linear relationship between peak current and the concentration of DES over the range of 0.1 and 50μM, and the limit of detection was 0.008μM. The sensor accurately detected DES in actual water samples, with recovery rates ranging from 89.21% to 105.3%. The electrochemical sensor was simple to prepare and had practical significance for the detection of DES in water. The research results of the sensor provide another alternative analytical means for the sensitive detection of DES in the environment, which is important for maintaining public health.
Collapse
Affiliation(s)
- Wanpen Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Keli Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Yuan Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Xiang Deng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Ruichao Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
| | - Wen Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| |
Collapse
|
5
|
Ortega-Zamora C, Jiménez-Skrzypek G, González-Sálamo J, Mazzapioda L, Navarra MA, Gentili A, Hernández-Borges J. Extraction of Emerging Contaminants from Environmental Waters and Urine by Dispersive Liquid-Liquid Microextraction with Solidification of the Floating Organic Droplet Using Fenchol:Acetic Acid Deep Eutectic Mixtures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:15714-15725. [PMID: 36507093 PMCID: PMC9727775 DOI: 10.1021/acssuschemeng.2c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/25/2022] [Indexed: 06/17/2023]
Abstract
In this work, several eutectic mixtures formed by fenchol and acetic acid at seven molar ratios (between 4:1 and 1:4) were characterized and studied for the first time for their possible application as extraction solvents in dispersive liquid-liquid microextraction based on the solidification of the floating organic droplet (DLLME-SFO). A group of 13 emerging contaminants (gemfibrozil, bisphenol F, bisphenol A, 17β-estradiol, testosterone, estrone, levonorgestrel, 4-tert-octylphenol, butyl benzyl phthalate, dibutyl phthalate, 4-octylphenol, 4-nonylphenol, and dihexyl phthalate) was selected and determined by liquid chromatography with ultraviolet and tandem mass spectrometry detection. Among the studied mixtures, only those of 2:1 and 1:1 provided the suitable features from an operational and repeatability point of view, suggesting that several eutectic mixtures of the same components may also provide similar results. Once the extraction conditions of both mixtures were optimized, the method was applied to the extraction of sea water, urine, and wastewater at different concentration levels, allowing the achievement of absolute recovery values between 49 and 100% for most analytes with relative standard deviation values below 19%. In addition, several samples of each type were analyzed, finding bisphenol A and gemfibrozil in some of them. The greenness of the method was also evaluated using the AGREEprep metric. The DLLME-SFO procedure was found to be very simple, quick, and effective and with a good sample throughput.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento
de Química, Unidad Departamental de Química Analítica,
Facultad de Ciencias, Universidad de La
Laguna (ULL), Avda. Astrofísico
Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez,
s/n, 38206 San Cristóbal
de La Laguna, Spain
| | - Gabriel Jiménez-Skrzypek
- Departamento
de Química, Unidad Departamental de Química Analítica,
Facultad de Ciencias, Universidad de La
Laguna (ULL), Avda. Astrofísico
Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez,
s/n, 38206 San Cristóbal
de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento
de Química, Unidad Departamental de Química Analítica,
Facultad de Ciencias, Universidad de La
Laguna (ULL), Avda. Astrofísico
Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez,
s/n, 38206 San Cristóbal
de La Laguna, Spain
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Lucia Mazzapioda
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Assunta Navarra
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Javier Hernández-Borges
- Departamento
de Química, Unidad Departamental de Química Analítica,
Facultad de Ciencias, Universidad de La
Laguna (ULL), Avda. Astrofísico
Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez,
s/n, 38206 San Cristóbal
de La Laguna, Spain
| |
Collapse
|
6
|
Disha, Kumari P, Patel MK, Kumar P, Nayak MK. Carbon Dots Conjugated Antibody as an Effective FRET-Based Biosensor for Progesterone Hormone Screening. BIOSENSORS 2022; 12:993. [PMID: 36354503 PMCID: PMC9688503 DOI: 10.3390/bios12110993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 08/29/2023]
Abstract
In this work, carbon dots (CDs) were synthesized by a one-step hydrothermal method using citric acid and ethylene diamine, and covalently functionalized with antibodies for the sensing of progesterone hormone. The structural and morphological analysis reveals that the synthesized CDs are of average size (diameter 8-10 nm) and the surface functionalities are confirmed by XPS, XRD and FT-IR. Further graphene oxide (GO) is used as a quencher due to the fluorescence resonance energy transfer (FRET) mechanism, whereas the presence of the analyte progesterone turns on the fluorescence because of displacement of GO from the surface of CDs effectively inhibiting FRET efficiency due to the increased distance between donor and acceptor moieties. The linear curve is obtained with different progesterone concentrations with 13.8 nM detection limits (R2 = 0.974). The proposed optical method demonstrated high selectivity performance in the presence of structurally resembling interfering compounds. The PL intensity increased linearly with the increased progesterone concentration range (10-900 nM) under the optimal experimental parameters. The developed level-free immunosensor has emerged as a potential platform for simplified progesterone analysis due to the high selectivity performance and good recovery in different samples of spiked water.
Collapse
Affiliation(s)
- Disha
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Poonam Kumari
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj K. Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Manufacturing Science and lnstrumentation, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
| | | | - Manoj K. Nayak
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Lopes D, Morés L, da Silva M, Schneider M, Merib J, Carasek E. Determination of hormones in urine by hollow fiber microporous membrane liquid-liquid extraction associated with 96-well plate system and HPLC-FLD detection. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123406. [PMID: 35944416 DOI: 10.1016/j.jchromb.2022.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
In this work, hollow-fiber microporous membrane liquid-liquid extraction (HF-MMLLE) was associated with a 96-well plate system for the determination of estrone, 17-β-estradiol, estriol and 17-α-ethinylestradiol in urine samples. This method exhibited some advantages, such as low cost, easy application, high-throughput and environmentally-friendly aspects. The type of organic solvent to fill the membrane, ionic strength effect, sample dilution, extraction and desorption time, and desorption solvent were examined. After the optimizations, the conditions were comprised of 45 min of extraction, 1-octanol as organic solvent and 15% (w/v) of NaCl; methanol was used as desorption solvent, and the desorption time was fixed at 10 min. The dilution of the sample increased the sensitivity due to the reduction of matrix effects; thus, urine samples were diluted 40-fold. The limits of detection ranged from 0.03 μg L-1 for 17-β-estradiol to 15 μg L-1 for estrone, and the limits of quantification ranged from 0.1 μg L-1 for 17-β-estradiol to 10 μg L-1 for estrone. The intra-day precision varied from 1.0% for estriol to 13.3% for 17-α-ethinylestradiol, and inter-day precision varied from 7.3% for estrone to 18.1% for estriol. The relative recoveries varied from 82 to 118%.
Collapse
Affiliation(s)
- Daniela Lopes
- Departamento de Química, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Lucas Morés
- Departamento de Química, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Mayara da Silva
- Departamento de Química, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Mauana Schneider
- Departamento de Química, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS 90050-170, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, SC 88040-900, Brazil.
| |
Collapse
|
8
|
Yang Z, Chen Y, Jia J, Hou C, Xuan R, Wang T. C18-modified halloysite as a novel sorbent in matrix solid-phase dispersion for the extraction of bisphenol A and diethylstilbestrol from human placenta. Anal Bioanal Chem 2022; 414:4897-4907. [PMID: 35595839 DOI: 10.1007/s00216-022-04114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/01/2022]
Abstract
In the current study, the C18-modified halloysite was fabricated via silylation reaction and subsequently used as sorbent in matrix solid-phase dispersion (MSPD) for the extraction of bisphenol A and diethylstilbestrol from human placenta, followed by high-performance liquid chromatography-tandem mass spectrometry analysis. The as-prepared sorbent was characterized by scanning electron microscopy, energy-dispersive spectrometry, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo-gravimetric analysis. Varied parameters such as methanol concentration in wash solvent, pH and salt concentration in elution solvent, elution volume, and mass ratio of sample to sorbent were optimized. The adsorption capacities of bisphenol A and diethylstilbestrol on the developed C18-modified halloysite were 6.3 and 14.2 mg g-1, respectively, higher than those on the commercial C18 silica gel. Under the optimal condition, the average recoveries of bisphenol A and diethylstilbestrol by MSPD varied from 91.0 to 106.0%, and the relative standard deviations were less than 10.6% for human placenta samples. The limits of detection in the human placenta were 0.2 μg kg-1 for bisphenol A and diethylstilbestrol. The simple C18-modified halloysite-based MSPD method holds great potential for the determination of trace bisphenol A and diethylstilbestrol in the human placenta and other tissues of pregnant women with high sensitivity, accuracy, and reliability.
Collapse
Affiliation(s)
- Zhenglun Yang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, People's Republic of China
| | - Yihui Chen
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012, People's Republic of China.
| | - Jianggang Jia
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012, People's Republic of China
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, People's Republic of China.
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
9
|
Huidobro-López B, López-Heras I, Alonso-Alonso C, Martínez-Hernández V, Nozal L, de Bustamante I. Analytical method to monitor contaminants of emerging concern in water and soil samples from a non-conventional wastewater treatment system. J Chromatogr A 2022; 1671:463006. [PMID: 35395450 DOI: 10.1016/j.chroma.2022.463006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
Abstract
Nonconventional wastewater treatments, such as vegetation filters (VFs), are propitious systems to attenuate contaminants of emerging concern (CECs) in small municipalities. The development of standardised multiresidue and multimatrix methods suitable for measuring a reliable number of CEC in environmental samples is crucial for monitoring infiltrating concentrations and for ensuring these systems' treatment capacity. The objective of this study is to develop and validate an analytical method for the simultaneous determination of CECs, including transformation products (TPs), with diverse physico-chemical properties, in environmental samples. The optimised method is based on sample clean-up and preconcentration by solid-phase extraction (SPE), followed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). The method is able to detect and quantify 40 target CECs, including pharmaceuticals of different classes (analgesics, antibiotics, antihypertensives, lipid regulators, anticonvulsants, antidepressants, antiarrhythmics, beta-blockers, amongst others), hormones and lifestyle products with good reproducibility (variations below 23%), in different water matrices, and 28 CECs, in soil samples. Acceptable recoveries (65-120%) were obtained for most of the CECs in all the matrices. However in the soil samples, as complexity required a prior extraction treatment, the recovery of some analytes was affected, which reduced the number of target CECs. The achieved methodological quantification limits (0.05-5 ng/L and 0.04-1.1 ng/g levels for the water and the soil matrices, respectively) were reasonably low for most CECs. The proposed method was successfully applied to monitor CECs in a VF. The CECs detected at higher concentrations are some of the world's most widely used products (e.g. acetaminophen or caffeine and its main TP, paraxanthine). The results showed an almost 70% reduction in CEC concentrations during infiltration. The groundwater data indicated that the VF treatment operation did not affect the underlying aquifer (Cmax found in GW <1 µg/L).
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Geology, Geography and Environment Department, University of Alcala, A-II km 33.0, 28805 Alcalá de Henares, Madrid, Spain.
| | - Isabel López-Heras
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | | | | | - Leonor Nozal
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Center of Applied Chemistry and Biotechnology (CQAB), University of Alcala and General Foundation of Alcala University (FGUA), A-II km 33.0, 28871 Alcalá de Henares, Madrid, Spain
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Geology, Geography and Environment Department, University of Alcala, A-II km 33.0, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
10
|
Zatrochová S, Martínez-Pérez-Cejuela H, Catalá-Icardo M, Simó-Alfonso EF, Lhotská I, Šatínský D, Herrero-Martínez JM. Development of hybrid monoliths incorporating metal–organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples. Mikrochim Acta 2022; 189:92. [PMID: 35132465 PMCID: PMC8821068 DOI: 10.1007/s00604-022-05208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
A novel coating based on hybrid monolith with metal–organic framework (MOF) onto conventional Teflon-coated magnetic stir bars was developed. For this purpose, the external surface of the Teflon stir bar was firstly vinylized in order to immobilize a glycidyl methacrylate (GMA)–based polymer onto the magnet. Then, an amino-modified MOF of type MIL-101 (NH2-MIL-101(Al)) was covalently attached to the GMA-based monolith. After the synthesis process, several parameters affecting extraction of target estrogens by stir bar sorptive extraction (SBSE) including pH, ionic strength, extraction time, stirring rate, desorption solvent, and desorption time were also investigated. The resulting hybrid monolith was evaluated as SBSE sorbent for extraction of three estrogens (estrone, 17β-estradiol, estriol) and synthetic 17β-ethinylestradiol from water and human urine samples followed by HPLC with fluorescence detection (excitation and emission wavelengths, 280 and 310 nm, respectively). Under the optimal experimental conditions, the analytical figures of the method were established, achieving satisfactory limits of detection in the range of 0.015–0.58 µg L−1, recovery results ranging from 70 to 95% with RSD less than 6%, and precision values (intra- and inter-extraction units) below 6%.
Collapse
|
11
|
|
12
|
Disha, Kumari P, Nayak MK, Kumar P. An electrochemical biosensing platform for progesterone hormone detection using magnetic graphene oxide. J Mater Chem B 2021; 9:5264-5271. [PMID: 34151922 DOI: 10.1039/d1tb00380a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent times, graphene and its derivatives have turned out to be emerging nanomaterials as transducers to promote electron transport in the field of biosensing using electrochemical techniques. In electrochemical biosensing strategies, key factors such as signal amplification, stability, and sensitivity are necessary for attaining improved sensor performance. In the present work, we synthesized magnetic nanocomposites of graphene oxide and employed them as an electrode material for the loading of bio receptors. The increased surface area with high electric conductance enhanced the sensor's response. The immobilization of progesterone (PGN) antibodies on the modified electrode-sensing surface led to a hindered electron transport that decreased the current response. The developed electrochemical immunosensor assembled successfully in a stepwise process using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies along with the electrochemical impedance spectroscopy (EIS) analysis. The current response decreased linearly with the increased progesterone (PGN) concentration range of 0.01 pM-1000 nM with excellent detection limits of 0.15 pM (DPV) and 0.17 pM (CV) under optimal experimental conditions. The label-free electrochemical immunosensor has shown a promising platform for rapid and direct analysis of PGN due to its high sensitivity, selectivity, stability, and repeatability in water samples.
Collapse
Affiliation(s)
- Disha
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Poonam Kumari
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj K Nayak
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parveen Kumar
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India.
| |
Collapse
|
13
|
Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids. Molecules 2020; 26:molecules26010032. [PMID: 33374724 PMCID: PMC7793500 DOI: 10.3390/molecules26010032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022] Open
Abstract
In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid–liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC–UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 μg L−1 (for E1), and calibration curves exhibited linearity in the range of 1–1000 μg L−1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.
Collapse
|
14
|
Arismendi D, Díaz K, Aguilera-Marabolí N, Sepúlveda B, Richter P. Rotating-disk sorptive extraction for the determination of sex hormones and triclosan in urine by gas chromatography-mass spectrometry: Clean-up integrated steps and improved derivatization. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Yehia AM, Arafa RM, Abbas SS, Amer SM. Chromatographic Separation of Synthetic Estrogen and Progesterone in Presence of Natural Congeners: Application to Saliva and Pharmaceutical Samples. Chromatographia 2020. [DOI: 10.1007/s10337-020-03982-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Magnetic solid-phase extraction and pre-concentration of 17β-estradiol and 17α-ethinylestradiol in tap water using maghemite-graphene oxide nanoparticles and determination via HPLC with a fluorescence detector. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Jiang X, Ruan G, Zhang W, Zhang Y, Du F, Chen Z. Preparation of porous polymers based on high internal phase emulsion for enrichment of estrogens in urine. J Sep Sci 2020; 44:1140-1147. [PMID: 32725854 DOI: 10.1002/jssc.202000566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
In this work, graphene oxide-hybridized high internal emulsion polymers with crosslinking and open-cell structure was prepared and applied for separation and enrichment of estrogens. The prepared graphene oxide-hybridized high internal emulsion polymer monoliths had hydrophobicity, porosity and stability, which were just obtained by one step in-situ emulsion polymerization of 2-ethylhexyl acrylate, glycidyl methacrylate, and divinylbenzene after doping with graphene oxide. Benefit from the advantages of its unique character, the graphene oxide-hybridized high internal emulsion polymers monolith with low background pressure (85 kPa) and high mechanical strength could be applied for efficient separation for trace estrogens in urine. Under the optimized condition, trace estrogens, including estrone, estradiol, and diethylstilbestrol in urine, were detected by high-performance liquid chromatography, all the sample preparation process were carried out in 15 min, the recovery rate was ranged from 85.0 to 106.0% and the relative standard deviation was less than 4.
Collapse
Affiliation(s)
- Xiangqiong Jiang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Wenjuan Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Yan Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Fuyou Du
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Zhengyi Chen
- Pharmacy School, Guilin Medical University, Guangxi, P. R. China
| |
Collapse
|
18
|
Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int J Mol Sci 2020; 21:ijms21041519. [PMID: 32102189 PMCID: PMC7073155 DOI: 10.3390/ijms21041519] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the stability and regulation of the endocrine system of the body or its offspring. These substances are generally stable in chemical properties, not easy to be biodegraded, and can be enriched in organisms. In the past half century, EDCs have gradually entered the food chain, and these substances have been frequently found in maternal blood. Perinatal maternal hormone levels are unstable and vulnerable to EDCs. Some EDCs can affect embryonic development through the blood-fetal barrier and cause damage to the neuroendocrine system, liver function, and genital development. Some also effect cross-generational inheritance through epigenetic mechanisms. This article mainly elaborates the mechanism and detection methods of estrogenic endocrine disruptors, such as bisphenol A (BPA), organochlorine pesticides (OCPs), diethylstilbestrol (DES) and phthalates (PAEs), and their effects on placenta and fetal health in order to raise concerns about the proper use of products containing EDCs during pregnancy and provide a reference for human health.
Collapse
|
19
|
Ruan X, Xing L, Peng J, Li S, Song Y, Sun Q. A simplified fabric phase sorptive extraction method for the determination of amphetamine drugs in water samples using liquid chromatography-mass spectrometry. RSC Adv 2020; 10:10854-10866. [PMID: 35492944 PMCID: PMC9050397 DOI: 10.1039/c9ra10138a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 12/04/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) can directly extract the target analytes and simultaneously determine many similar substances from complicated sample matrices. Also, it has very high chemical stability. Therefore, we used fabric phase sorptive extraction to analyze three amphetamine drugs (amphetamine (AM), methamphetamine (MAM), and 3,4-methylenedioxymethamphetamine (MDMA)) in water. This was coupled with ultrahigh-performance liquid chromatography and tandem mass spectrometry. The effects of different sorbent chemistries such as sorption time, ratios of back-extraction solvents, back-extraction time, and the salt effect on the extraction efficiency were studied; the optimum operation conditions were determined. Medium polarity polar polymer-coated FPSE media were created using short-chain poly (tetrahydrofuran) (PTHF). This is the most efficient extraction media for the analytes of interest. Under the optimized conditions, the linear range of the three amphetamine drugs were 0.1–150.0 (AM, MAM) and 0.5–200 ng mL−1 (MDMA). The correlation coefficients (γ) were 0.9947 (AM), 0.9925 (MAM), and 0.9918 (MDMA). The detection limits (LOD) were 0.025 ng mL−1 for AM, 0.029 ng mL−1 for MAM, and 0.01 ng mL−1 for MDMA. The corresponding limit of quantification values (LOQ) were 0.083 ng mL−1, 0.097 ng mL−1, and 0.031 ng mL−1, respectively. The recoveries were 73.4–91.6%, 82.6–95.4%, and 92.7–95.3%, respectively, and the relative standard deviations (RSD) were 1.65–6.88%, 1.38–6.11%, and 1.58–7.34%, respectively. Moreover, our method can be successfully applied for the analysis of amphetamines in wastewater samples, and at the same time, lays the foundation for the future detection of such substances. Fabric phase sorptive extraction (FPSE) can directly extract the target analytes and simultaneously determine many similar substances from complicated sample matrices.![]()
Collapse
Affiliation(s)
- Xiaomeng Ruan
- Criminal Investigation Police University of China
- China
| | - Limei Xing
- Criminal Investigation Police University of China
- China
| | - Ju Peng
- Criminal Investigation Police University of China
- China
| | - Shiying Li
- Criminal Investigation Police University of China
- China
| | - Yiqun Song
- Criminal Investigation Police University of China
- China
| | - Qianqian Sun
- Criminal Investigation Police University of China
- China
| |
Collapse
|
20
|
van der Berg C, Venter G, van der Westhuizen FH, Erasmus E. Development and validation of LC-ESI-MS/MS methods for quantification of 27 free and conjugated estrogen-related metabolites. Anal Biochem 2019; 590:113531. [PMID: 31805274 DOI: 10.1016/j.ab.2019.113531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
An imbalance in the estrogen metabolism has been associated with an increased risk of breast cancer development. Evaluation of the estrogen biotransformation capacity requires monitoring of various estrogen metabolites. Up to now, only some estrogen metabolites could be measured in urine. However, in order to offer tailor made nutritional support or therapies, a complete estrogen metabolite profile is required in order to identify specific deficiencies in this pathway for each patient individually. Here, we focused on this need to quantify as many as possible of the estrogen-related metabolites excreted in urine. The method was developed to quantify 27 estrogen-related metabolites in small urine quantities. This entailed sample clean-up with a multi-step solid phase extraction procedure, derivatisation of the metabolites in the less water-soluble fraction through dansylation, and analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The metabolites accurately quantified by the method devised included parent estrogens, hydroxylated and methylated forms, metabolites of the 16α-hydroxyestrogen pathway, sulphate and glucuronide conjugated forms, precursors and a related steroid hormone. This method was validated and enabled quantification in the high picograms and low nanograms per millilitre range. Finally, analyses of urine samples confirmed detection and quantification of each of the metabolites.
Collapse
Affiliation(s)
- Carien van der Berg
- Human Metabolomics, North-West University (Potchefstroom Campus), Potchefstroom, 2531, South Africa.
| | - Gerda Venter
- Human Metabolomics, North-West University (Potchefstroom Campus), Potchefstroom, 2531, South Africa
| | | | - Elardus Erasmus
- Human Metabolomics, North-West University (Potchefstroom Campus), Potchefstroom, 2531, South Africa.
| |
Collapse
|
21
|
Saraji M, Tarami M, Mehrafza N. Preparation of a nano-biocomposite film based on halloysite-chitosan as the sorbent for thin film microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Arvand M, Sayyar S, Hemmati S. Visible-light-driven polydopamine/CdS QDs hybrid materials with synergistic photocatalytic activity. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Manzo V, Goya-Pacheco J, Arismendi D, Becerra-Herrera M, Castillo-Aguirre A, Castillo-Felices R, Rosero-Moreano M, Carasek E, Richter P. Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Anal Chim Acta 2019; 1087:1-10. [PMID: 31585556 DOI: 10.1016/j.aca.2019.08.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
This work reports for the first time the use of laminar cork as a sorptive phase in a microextraction technique, rotating-disk sorptive extraction (RDSE). Typical hormones (estrone, estradiol, estriol and ethinyl estradiol) were selected as analyte models and extracted from wastewater samples on laminar cork with statistically equivalent extraction efficiency to that provided by Oasis HLB. The cork characterization was performed by confocal fluorescence microscopy (CLSM), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), allowing the identification of lignin, suberin and polysaccharides (cellulose and hemicellulose) as the main components of the cork. The best conditions for extraction were as follows: rotation velocity of the disk, 2000 rpm; extraction time, 45 min; and sample volume, 20 mL. The analytical features of the developed method show that calibration curves for all analytes have R2 values higher than 0.99. The absolute recoveries were higher than 63%, and the precision, expressed as relative standard deviation, ranged from 2 to 16%. The LOD and LOQ ranges were 3-19 and 10-62 ng L-1, respectively. The proposed method was applied to the analysis of wastewater, and the concentrations of hormones in a wastewater treatment plant in Santiago, Chile, ranged from <LOQ to 48 ng L-1.
Collapse
Affiliation(s)
- Valentina Manzo
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Jairón Goya-Pacheco
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Mercedes Becerra-Herrera
- Department of Chemistry, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | - Alver Castillo-Aguirre
- Department of Chemistry, Faculty of Sciences, National University of Colombia, Headquarters Bogotá, Road 30 N°. 45-03, Colombia
| | - Rosario Castillo-Felices
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, 4070043, Concepcion, Chile
| | - Milton Rosero-Moreano
- Research Group in Chromatography and Related Techniques (GICTA), Department of Chemistry, Faculty of Exact and Natural Sciences, University of Caldas, Calle 65 Nº. 26-10, Manizales, Colombia
| | - Eduardo Carasek
- Department of Chemistry, Federal University of Santa Catalina, Florianópolis, 88040900, SC, Brazil
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
24
|
Czarny K, Szczukocki D, Krawczyk B, Juszczak R, Skrzypek S, Gadzała‐Kopciuch R. Molecularly imprinted polymer film grafted from porous silica for efficient enrichment of steroid hormones in water samples. J Sep Sci 2019; 42:2858-2866. [DOI: 10.1002/jssc.201900281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Karolina Czarny
- Laboratory of Environmental ThreatsDepartment of Inorganic and Analytical ChemistryFaculty of ChemistryUniversity of Lodz Lodz Poland
| | - Dominik Szczukocki
- Laboratory of Environmental ThreatsDepartment of Inorganic and Analytical ChemistryFaculty of ChemistryUniversity of Lodz Lodz Poland
| | - Barbara Krawczyk
- Laboratory of Environmental ThreatsDepartment of Inorganic and Analytical ChemistryFaculty of ChemistryUniversity of Lodz Lodz Poland
| | - Renata Juszczak
- Laboratory of Environmental ThreatsDepartment of Inorganic and Analytical ChemistryFaculty of ChemistryUniversity of Lodz Lodz Poland
| | - Sławomira Skrzypek
- Laboratory of Environmental ThreatsDepartment of Inorganic and Analytical ChemistryFaculty of ChemistryUniversity of Lodz Lodz Poland
| | - Renata Gadzała‐Kopciuch
- Department of Environmental Chemistry and BioanalyticsFaculty of ChemistryNicolaus Copernicus University in Toruń Torun Poland
- Interdisciplinary Centre for Modern TechnologiesNicolaus Copernicus University in Toruń Toruń Poland
| |
Collapse
|
25
|
do Carmo SN, Merib J, Carasek E. Bract as a novel extraction phase in thin-film SPME combined with 96-well plate system for the high-throughput determination of estrogens in human urine by liquid chromatography coupled to fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:17-24. [PMID: 31005770 DOI: 10.1016/j.jchromb.2019.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
In this study, an environmentally friendly and high-throughput method was developed for the determination of estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and estriol (E3) in human urine by liquid chromatography-fluorescence detector (HPLC-FLD). A biosorbent (bract) was proposed as extraction phase for Thin-Film SPME combined with 96-well system. The characterization of the biosorbent was performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimizations were carried out through univariate and multivariate approaches with optimal conditions comprised of urine samples diluted 40-fold, liquid desorption performed in methanol and addition of 20% (w/v) of NaCl in the sample. Considering an extraction/desorption cycle using the 96-well plate system, the sample preparation time was 1.7 min per sample, which contributes to the high-throughput of the method proposed. The analytical parameters of merit were determined and satisfactory results were achieved, including limits of detection ranging from 0.3 μg L-1 for estradiol to 3 μg L-1 for estrone, while limits of quantification varied from 1 μg L-1 for estradiol to 10 μg L-1 for estrone. The correlation coefficients ranged from 0.9947 for estrone to 0.9999 for estriol. The accuracy and intra-assay and intermediate precisions (RSD) were evaluated through extractions in diluted urine samples (40-fold) spiked with each analyte (1, 200 and 400 μg L-1 for E3; 0.1, 200 and 400 μg L-1 for E2; 0.5, 200 and 400 μg L-1 for EE2 and 10, 200 and 400 μg L-1 for E1). The relative recoveries (n = 3) ranged from 71 to 105%, intra-assay precision (n = 3) varied from 1 to 17% and intermediate precision (n = 9) ranged from 2 to 19%. The method developed can be successfully used for the quantification of estrogens in human urine samples.
Collapse
Affiliation(s)
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC, Brazil.
| |
Collapse
|
26
|
Kotłowska A, Szefer P. Recent Advances and Challenges in Steroid Metabolomics for Biomarker Discovery. Curr Med Chem 2019; 26:29-45. [PMID: 29141530 DOI: 10.2174/0929867324666171113120810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/01/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Steroid hormones belong to a group of low-molecular weight compounds which are responsible for maintenance of various body functions, thus, their accurate assessment is crucial for evaluation of biosynthetic defects. The development of reliable methods allowing disease diagnosis is essential to improve early detection of various disorders connected with altered steroidogenesis. Currently, the field of metabolomics offers several improvements in terms of sensitivity and specificity of the diagnostic methods when opposed to classical diagnostic approaches. The combination of hyphenated techniques and pattern recognition methods allows to carry out a comprehensive assessment of the slightest alterations in steroid metabolic pathways and can be applied as a tool for biomarker discovery. METHODS We have performed an extensive literature search applying various bibliographic databases for peer-reviewed articles concentrating on the applications of hyphenated techniques and pattern recognition methods incorporated into the steroid metabolomic approach for biomarker discovery. RESULTS The review discusses strengths, challenges and recent developments in steroidbased metabolomics. We present methods of sample collection and preparation, methods of separation and detection of steroid hormones in biological material, data analysis, and interpretation as well as examples of applications of steroid metabolomics for biomarker discovery (cancer, mental and central nervous system disorders, endocrine diseases, monitoring of drug therapy and doping control). CONCLUSION Information presented in this review will be valuable to anyone interested in the application of metabolomics for biomarker discovery with a special emphasis on disorders of steroid hormone synthesis and metabolism.
Collapse
Affiliation(s)
- Alicja Kotłowska
- Department of Food Sciences, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Piotr Szefer
- Department of Food Sciences, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
27
|
Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1591:87-98. [DOI: 10.1016/j.chroma.2019.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
|
28
|
Mirzajani R, Kardani F, Ramezani Z. A nanocomposite consisting of graphene oxide, zeolite imidazolate framework 8, and a molecularly imprinted polymer for (multiple) fiber solid phase microextraction of sterol and steroid hormones prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:129. [DOI: 10.1007/s00604-018-3217-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022]
|
29
|
Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Sun T, Wang D, Tang Y, Xing X, Zhuang J, Cheng J, Du Z. Fabric-phase sorptive extraction coupled with ion mobility spectrometry for on-site rapid detection of PAHs in aquatic environment. Talanta 2018; 195:109-116. [PMID: 30625520 DOI: 10.1016/j.talanta.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/03/2023]
Abstract
The contamination of water is a high risk to human health, so there is an urgent need to rapidly detect water pollution in the field. Ion mobility spectrometry (IMS) is suitable for on-site analysis with the merit of rapid analysis and compact size. In this study, we developed a new method which coupled fabric phase sorptive extraction (FPSE) with IMS for rapid detection of polycyclic aromatic hydrocarbons (PAHs) in water present in the field. Polydimethylsiloxane (PDMS) was coated on the glass fiber cloth through a sol-gel reaction. After extracting the PAHs in water, the fabric coated PDMS could be directly put into the inlet of IMS instrument for thermal desorption. The PAHs were analyzed by the IMS instrument operated in the positive ion mode with a corona discharge (CD) ionization source. The primary parameters affecting extraction efficiency such as extraction time, extraction temperature, and ionic strength were investigated and optimized by using phenanthrene (Phe), benzo[a]anthracene (BaA) and benzo[a]pyrene (BaP) as model compounds. Under the optimal conditions, the FPSE-IMS detection limits were 5 ng ml-1,8 ng ml-1 and 10 ng ml-1 respectively. Satisfactory recoveries were obtained in the range from 80.5% to 100.5% by testing the spiked real water samples and validated by the standard method(HJ487-2009). Based on the results, the method of FPSE-IMS could be feasibly applied for monitoring the water quality on-site and providing early warning in the field.
Collapse
Affiliation(s)
- Tangqiang Sun
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Di Wang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Yan Tang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Xuebin Xing
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jingcong Zhuang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jiaxing Cheng
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Zhenxia Du
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
31
|
Kaur H, Bala M, Bansal G. Reproductive drugs and environmental contamination: quantum, impact assessment and control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25822-25839. [PMID: 30039489 DOI: 10.1007/s11356-018-2754-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Industrial and municipal solid wastes, noise, pesticides, fertilizers and vehicular emission are visible pollutants responsible for environmental contamination and ill-effects on health of all living systems. But, environmental contamination due to drugs or medicines used for different purposes in humans and animals goes unseen largely and can affect the health of living system severely. During the last few decades, the usage of drugs has increased drastically, resulting in increased drug load in soil and water. Contraceptive and fertility drugs are extensively and effectively used in humans as well as animals for different purposes. Usage of these reproductive drugs in humans is increased manifold to manage reproductive problems and/or for birth control with changing lifestyles. These drugs are excreted in urine and faeces as metabolite or conjugated forms, leading to contamination of water, milk and animal produce, which are consumed directly by humans as well as animals. These drugs are not eliminated even by water treatment plant. Consumption of such contaminated water, milk, meat and poultry products results in reproductive disorders such as fertility loss in men and increase risk of different types of cancers in humans. Therefore, assessment of impact of environmental contamination by these drugs on living system is of paramount importance. The purpose of this review article is to provide a comprehensive analysis of various research and review reports on different contraceptive and fertility drugs used in human and animals, their occurrence in the environment and their ill-effects on living systems. The approaches to control this invisible menace have also been proposed.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Zoology and Environmental Sciences, Punjabi University Patiala, Patiala, Punjab, India.
| | - Madhu Bala
- Department of Zoology and Environmental Sciences, Punjabi University Patiala, Patiala, Punjab, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| |
Collapse
|
32
|
Gao G, Li S, Li S, Zhao L, Wang T, Hou X. Development and application of vortex-assisted membrane extraction based on metal–organic framework mixed-matrix membrane for the analysis of estrogens in human urine. Anal Chim Acta 2018; 1023:35-43. [DOI: 10.1016/j.aca.2018.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 02/01/2023]
|
33
|
Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples. SEPARATIONS 2018. [DOI: 10.3390/separations5030035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
An X, Chai W, Deng X, Chen H, Ding G. A bioinspired polydopamine approach toward the preparation of gold-modified magnetic nanoparticles for the magnetic solid-phase extraction of steroids in multiple samples. J Sep Sci 2018; 41:2774-2782. [PMID: 29722147 DOI: 10.1002/jssc.201800080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/12/2022]
Abstract
In this work, a simple, facile, and sensitive magnetic solid-phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high-performance liquid chromatography analysis. Gold-modified Fe3 O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8-500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20-0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.
Collapse
Affiliation(s)
- Xuehan An
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Weibo Chai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xiaojuan Deng
- Analysis Center, Tianjin University, Tianjin, P. R. China
| | - Hui Chen
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Guosheng Ding
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China.,Analysis Center, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
35
|
da Silva DC, Oliveira CC. Development of Micellar HPLC-UV Method for Determination of Pharmaceuticals in Water Samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9143730. [PMID: 29686934 PMCID: PMC5852859 DOI: 10.1155/2018/9143730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 06/08/2023]
Abstract
Method for extraction and determination of amoxicillin, caffeine, ciprofloxacin, norfloxacin, tetracycline, diclofenac, ibuprofen, nimesulide, levonorgestrel, and 17α-ethynylestradiol exploiting micellar liquid chromatography with PDA detector and solid-phase extraction was proposed. The usage of toxic solvents was low; the chromatographic separation of the medicaments was performed using a C18 column and mobile phases A and B containing 15.0% (v/v) ethanol, 3.0% (m/v) sodium dodecyl sulfate (SDS), and 0.02 mol·L-1 phosphate at pHs 7.0 and 8.0, respectively. The method is simple, selective, and fast, and the analytes were separated in 23.0 min. For extraction, 1000 mL of sample containing 2.0% (v/v) ethanol and 0.002 mol·L-1 citric acid at pH 2.50 was loaded through a 1000 mg of C18 cartridge. The analytes were eluted using 3.0 mL of ethanol, which were evaporated and redissolved in 0.5 mL of mobile phase. Concentration factors better than 1200, except amoxicillin (224), were obtained. The analytical curves were linear (R2 better than 0.992); LOD and LOQ (n=10) presented values in the range of 0.019-0.247 and 0.058-0.752 mg·L-1, respectively. Recoveries of 99% were obtained, and the results are in agreement with those obtained by the comparative methods.
Collapse
Affiliation(s)
- Danielle Cristina da Silva
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, Estrada para Boa Esperança, Km 04 85660-000 Dois Vizinhos, PR, Brazil
| | - Cláudio Celestino Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo, 5790 87020-900 Maringá, PR, Brazil
| |
Collapse
|
36
|
Mofidi Z, Norouzi P, Larijani B, Seidi S, Ganjali MR, Morshedi M. Simultaneous determination and extraction of ultra- trace amounts of estradiol valerate from whole blood using FFT square wave voltammetry and low-voltage electrically enhanced microextraction techniques. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Xu P, Zhou X, Xu D, Xiang Y, Ling W, Chen M. Contamination and Risk Assessment of Estrogens in Livestock Manure: A Case Study in Jiangsu Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E125. [PMID: 29329262 PMCID: PMC5800224 DOI: 10.3390/ijerph15010125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
Abstract
This study investigated the occurrence and contamination risk of estrogens in livestock manure in Jiangsu Province, China. Four estrogens-estriol (E3), 17β-estradiol (17β-E2), bisphenol A (BPA), and 17α-ethinyloestradiol (EE2)-were detected in livestock manure from hens, ducks, swine, and cows. The respective mean concentrations of each estrogen found in these manures were 289.8, 334.1, 330.3, and 33.7 μg/kg for E3; 38.6, 10.9, 52.9, and 38.8 μg/kg for 17β-E2; 63.6, 48.7, 51.9, and 11.7 μg/kg for BPA; and 14.3, 11.3, 25.1, and 21.8 μg/kg for EE2. Estrogens were most frequently detected at high concentrations in the manure of finishing pigs, followed by the manure of growing pigs and piglets. Estrogens can be partially degraded after banking up for seven days; yet, great quantities of estrogens remain in livestock manure. The total estradiol equivalent quantity (EEQt) estimated to be present in aquatic environments but originating from livestock waste was 10.5 ng/L, which was greater than the hazard baseline value (1 ng/L) and also higher than the proposed lowest observable effect concentration (10 ng/L) of E2 in aquatic environments. The results of our study demonstrate that livestock waste is an important source of estrogens, which may potentially affect the hormonal metabolism of aquatic organisms.
Collapse
Affiliation(s)
- Pengcheng Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yanbing Xiang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
38
|
Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection. Anal Bioanal Chem 2018; 410:4689-4699. [DOI: 10.1007/s00216-017-0823-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/27/2017] [Accepted: 12/08/2017] [Indexed: 01/28/2023]
|
39
|
Hashemi B, Zohrabi P, Raza N, Kim KH. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
In-tube solid-phase microextraction based on NH 2 -MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine. Talanta 2017; 165:377-383. [DOI: 10.1016/j.talanta.2016.12.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
|
41
|
Pei M, Zhang Z, Huang X, Wu Y. Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples. Talanta 2017; 165:152-160. [DOI: 10.1016/j.talanta.2016.12.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
|
42
|
Asati A, Satyanarayana GNV, Patel DK. Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC–MS/MS for the determination of glucocorticoids in water with the aid of experimental design. Anal Bioanal Chem 2017; 409:2905-2918. [DOI: 10.1007/s00216-017-0236-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
|
43
|
Goh SXL, Lee HK. An alternative perspective of hollow fiber-mediated extraction: Bundled hollow fiber array-liquid-phase microextraction with sonication-assisted desorption and liquid chromatography–tandem mass spectrometry for determination of estrogens in aqueous matrices. J Chromatogr A 2017; 1488:26-36. [DOI: 10.1016/j.chroma.2017.01.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022]
|
44
|
Zhang D, Zhou L, Lei Y, Zhou Z, Zhou J, Chen S. Investigation of diethylstilbestrol residue level in human urine samples by a specific monoclonal antibody. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7042-7050. [PMID: 28092005 DOI: 10.1007/s11356-017-8405-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Diethylstilbestrol (DES) is used as a kind of animal feed additive and affects people's health through the food chain. The purpose of this study is to detect the residue level of DES in 576 human urine samples directly. DES-BSA was used to immunize Balb/c mice. The monoclonal antibody was produced by hybridoma that was screened through cell fusion techniques. Finally, we developed the indirect competitive ELISA method to analyze 576 human urine samples from Zhejiang Province, China. The IC50 of this method was 3.33 ng/mL. The LOD and LOQ were 0.16 and 0.54 ng/mL. Linear range of the standard curve was from LOD to 12.50 ng/mL. There was no cross-reactivity with two kinds of estrogens and two structural analogs with DES. Five hundred seventy-six urine samples were analyzed by the indirect competitive ELISA method, and the detection rate was 98.78%. The mean concentration and geometric mean were 4.70 and 3.50 ng/mL. The indirect competitive ELISA method based on monoclonal antibody was sensitive and reliable for the detection of DES in human urine samples. The results warned us to pay more attention to human health and food safety.
Collapse
Affiliation(s)
- Dai Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Lifang Zhou
- Hangzhou EPIE Bio-detection Technology Limited, Hangzhou, 310051, China
| | - Yajing Lei
- Hangzhou EPIE Bio-detection Technology Limited, Hangzhou, 310051, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Jie Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China.
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
45
|
Lindholm-Lehto PC, Ahkola HSJ, Knuutinen JS. Procedures of determining organic trace compounds in municipal sewage sludge-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4383-4412. [PMID: 27966086 DOI: 10.1007/s11356-016-8202-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/01/2016] [Indexed: 05/23/2023]
Abstract
Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Petra C Lindholm-Lehto
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Heidi S J Ahkola
- Finnish Environment Institute (SYKE), Survontie 9 A, FI-40500, Jyväskylä, Finland
| | - Juha S Knuutinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
46
|
Bar adsorptive microextraction technique - application for the determination of pharmaceuticals in real matrices. Anal Bioanal Chem 2017; 409:2093-2106. [PMID: 28091717 DOI: 10.1007/s00216-016-0156-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/24/2016] [Accepted: 12/15/2016] [Indexed: 01/31/2023]
Abstract
In the present work, bar adsorptive microextraction using miniaturized devices (7.5 × 3.0 mm) coated with suitable sorbent phases, combined with microliquid desorption (100 μL) followed by high-performance liquid chromatography with diode array detection (BAμE-μLD/HPLC-DAD), is proposed for the determination of trace level of six pharmaceuticals (furosemide, mebeverine, ketoprofen, naproxen, diclofenac and mefenamic acid) in environmental water and urine matrices. By comparing ten distinct sorbent materials (five polymeric and five activated carbons), the polymer P5 proved to be the most suitable to achieve the best selectivity and efficiency. The solvent volume minimization in the liquid desorption stage demonstrated remarkable effectiveness, being more environmentally friendly, and simultaneously increased the microextraction enrichment factor two-fold. Assays performed through BAμE(P5, 0.9 mg)-μLD(100 μL)/HPLC-DAD on 25 mL of ultrapure water samples spiked at the 4.0 μg/L level yielded average recoveries ranging from 91.4% (furosemide) to 101.0% (ketoprofen) with good precision (RSD < 10.6%), under optimized experimental conditions. The analytical performance showed convenient detection limits (25.0 - 120.0 ng/L), good linear dynamic ranges (0.1 to 24.0 μg/L), appropriate determination coefficients (r 2 > 0.9983), and excellent repeatability through intraday (RSD < 10.4%)) and interday (RSD < 10.0%) assays. By using the standard addition methodology, the application of the present analytical approach on environmental waters and urine samples revealed the occurrence of trace levels of some pharmaceuticals. The solvent minimization during the back-extraction step associated with the miniaturization of BAμE devices proved to be a very promising analytical technology for static microextraction analysis. Graphical abstract BAμE operating under the floating sampling technology for the determination of pharmaceuticals in aqueous media.
Collapse
|
47
|
Reyes-Gallardo EM, Lucena R, Cárdenas S. Silica nanoparticles–nylon 6 composites: synthesis, characterization and potential use as sorbent. RSC Adv 2017. [DOI: 10.1039/c6ra24739c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silica nanoparticle–nylon 6 composites are successfully synthesized following a simple and rapid procedure. After their characterization, the composites were evaluated as sorbents under a dispersive solid phase microextraction format.
Collapse
Affiliation(s)
- E. M. Reyes-Gallardo
- Department of Analytical Chemistry
- Institute of Fine Chemistry and Nanochemistry
- Marie Curie Building
- University of Córdoba
- 14071 Córdoba
| | - R. Lucena
- Department of Analytical Chemistry
- Institute of Fine Chemistry and Nanochemistry
- Marie Curie Building
- University of Córdoba
- 14071 Córdoba
| | - S. Cárdenas
- Department of Analytical Chemistry
- Institute of Fine Chemistry and Nanochemistry
- Marie Curie Building
- University of Córdoba
- 14071 Córdoba
| |
Collapse
|
48
|
Preparation, characterization and evaluation of a hybrid polymeric coating with sorbent properties. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Moon YJ, Myung SW. Determination of Estrogens in Environmental Aqueous Samples Using Dispersive Liquid-Liquid Microextraction and HPLC/UV-Vis System. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yeon-Joo Moon
- Department of Chemistry; Kyonggi University; Yeongtong-Gu Korea 16227
| | - Seung-Woon Myung
- Department of Chemistry; Kyonggi University; Yeongtong-Gu Korea 16227
| |
Collapse
|
50
|
He XP, Lian ZR, Tan LJ, Wang JT. Preparation and characterization of magnetic molecularly imprinted polymers for selective trace extraction of dienestrol in seawater. J Chromatogr A 2016; 1469:8-16. [DOI: 10.1016/j.chroma.2016.09.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 02/02/2023]
|