Xu L, Liang W, Wen Y, Wang L, Yang X, Ren S, Jia N, Zuo X, Liu G. An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus.
Biosens Bioelectron 2017;
99:424-430. [PMID:
28810233 DOI:
10.1016/j.bios.2017.08.014]
[Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Electrochemical DNA biosensor has unique advantages for on-site pathogenic microorganism detection, yet the detection of long DNA towards genome DNA (gDNA) analysis remains challenge. In this work, we report a novel electrochemical biosensor for the ultrasensitive analysis of mecA DNA on methicillin-resistant Staphylococcus aureus (MRSA) genome, using a multi-signal probes (MSP) system. The MSP consists of 7 biotin-labelled signal probes that will combine to the target DNA in a prehybridization step, and then the complex will be captured by a DNA tetrahedron structure probe (TSP) on the electrode surface. Then, after the introduction of the streptavidin-labelled HRP enzyme, a catalysis current signal is detected that is found to be corresponding to the concentration of the target DNA. MSP in this work plays a critical role not only for the signal amplification through bringing 7 biotins, but also dramatically improves the accessibility of the target sequence embedded in the double-strand DNA molecules and complex second structures. The 3-D DNA TSP here provides steady support and optimized surface density for the very "large" complex of MSP system and gDNA, as a base of the capture probe. Finally, as low as 10fM synthetic target DNA was successfully detected, which is at least 3 magnitudes lower than that using single signal probe. Most importantly, we demonstrated the practicability of our analysis method by analyzing a 57fM MRSA gDNA sample showing excellent selectivity, and the reliability of the analysis was also demonstrated by digital PCR.
Collapse