1
|
Mitochondrial Coenzyme Q10 Determination Via Isotope Dilution Liquid Chromatography -Tandem Mass Spectrometry. Methods Mol Biol 2021. [PMID: 34118048 DOI: 10.1007/978-1-0716-1262-0_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain . Here, we describe an accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of mitochondrial CoQ10 in isolated mitochondria . In the assay, mitochondrial suspensions are spiked with CoQ10-[2H9] internal standard (IS), extracted with organic solvents and CoQ10 quantified by LC-MS/MS using multiple reaction monitoring (MRM).
Collapse
|
2
|
Pandey R, Riley CL, Mills EM, Tiziani S. Highly sensitive and selective determination of redox states of coenzymes Q 9 and Q 10 in mice tissues: Application of orbitrap mass spectrometry. Anal Chim Acta 2018; 1011:68-76. [PMID: 29475487 DOI: 10.1016/j.aca.2018.01.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (CoQ) is a redox active molecule that plays a fundamental role in mitochondrial energy generation and functions as a potent endogenous antioxidant. Redox ratio of CoQ has been suggested as a good marker of mitochondrial dysfunction and oxidative stress. Nevertheless, simultaneous measurement of redox states of CoQ is challenging owing to its hydrophobicity and instability of the reduced form. In order to improve the analytical methodology, paying special attention to this instability, we developed a highly sensitive and selective high-resolution/accurate-mass (HR/AM) UHPLC-MS/MS method for the rapid determination of redox states of CoQ9 and CoQ10 by ultra-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry. CoQs were extracted using hexane with the addition of butylated hydroxytoluene to limit oxidation during sample preparation. Chromatographic separation of the analytes was achieved on a Kinetex C18 column with the isocratic elution of 5 mM ammonium formate in 2-propanol/methanol (60:40) within 4 min. A full MS/all ion fragmentation (AIF) acquisition mode with mass accuracy < 5 ppm was used for detection and determination of redox states of CoQ9 and CoQ10 in healthy mice tissues using reduced and oxidized CoQ4 as internal standards. The validated method showed good linearity (r2 ≥ 0.9991), intraday, inter-day precision (CVs ≤ 11.9%) and accuracy (RE ≤±15.2%). In contrast to existing methods, the current method offers enhanced sensitivity (up to 52 fold) with LOD and LOQ ranged from 0.01 to 0.49 ng mL-1 and 0.04-1.48 ng mL-1, respectively. Moreover, we evaluated various diluents to investigate bench top stability (at 4 °C) of targeted analytes in tissue samples during LC-MS assay up to 24 h. Ethanol was determined to be an optimum diluent without any significant oxidation of reduced CoQ up to 24 h. The developed method offers a rapid, highly sensitive and selective strategy for the measurement of redox states of CoQs in clinical studies.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christopher L Riley
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Mills
- Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Yang R, Li Y, Li J, Liu C, Du P, Zhang T. Application of scCO2 technology for preparing CoQ10 solid dispersion and SFC-MS/MS for analyzing in vivo bioavailability. Drug Dev Ind Pharm 2017; 44:289-295. [DOI: 10.1080/03639045.2017.1391833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rujie Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yingchao Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jing Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Cuiru Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ping Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
4
|
|
5
|
Yang R, Li Y, Liu C, Xu Y, Zhao L, Zhang T. An improvement of separation and response applying post-column compensation and one-step acetone protein precipitation for the determination of coenzyme Q10 in rat plasma by SFC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:221-226. [DOI: 10.1016/j.jchromb.2016.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
6
|
Talluri MVNK, Kalariya PD, Dharavath S, Shaikh N, Garg P, Ramisetti NR, Ragampeta S. Automated statistical experimental design approach for rapid separation of coenzyme Q10 and identification of its biotechnological process related impurities using UHPLC and UHPLC-APCI-MS. J Sep Sci 2016; 39:3528-35. [PMID: 27488256 DOI: 10.1002/jssc.201501405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023]
Abstract
A novel ultra high performance liquid chromatography method development strategy was ameliorated by applying quality by design approach. The developed systematic approach was divided into five steps (i) Analytical Target Profile, (ii) Critical Quality Attributes, (iii) Risk Assessments of Critical parameters using design of experiments (screening and optimization phases), (iv) Generation of design space, and (v) Process Capability Analysis (Cp) for robustness study using Monte Carlo simulation. The complete quality-by-design-based method development was made automated and expedited by employing sub-2 μm particles column with an ultra high performance liquid chromatography system. Successful chromatographic separation of the Coenzyme Q10 from its biotechnological process related impurities was achieved on a Waters Acquity phenyl hexyl (100 mm × 2.1 mm, 1.7 μm) column with gradient elution of 10 mM ammonium acetate buffer (pH 4.0) and a mixture of acetonitrile/2-propanol (1:1) as the mobile phase. Through this study, fast and organized method development workflow was developed and robustness of the method was also demonstrated. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance to the International Conference on Harmonization, Q2 (R1) guidelines. The impurities were identified by atmospheric pressure chemical ionization-mass spectrometry technique. Further, the in silico toxicity of impurities was analyzed using TOPKAT and DEREK software.
Collapse
Affiliation(s)
- Murali V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India.
| | - Pradipbhai D Kalariya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India
| | - Shireesha Dharavath
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India
| | - Naeem Shaikh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S (Mohali) Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S (Mohali) Nagar, Punjab, India
| | | | - Srinivas Ragampeta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL, R&D Campus, Balanagar, Hyderabad, India.,Mass and Analytical Division, Indian Institute of Chemical Technology, Tarnaka, Hyderabad
| |
Collapse
|
7
|
Itkonen O, Turpeinen U. Mitochondrial coenzyme Q10 determination via isotope dilution liquid chromatography tandem mass spectrometry. Methods Mol Biol 2015; 1264:271-8. [PMID: 25631021 DOI: 10.1007/978-1-4939-2257-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain. Here, we describe an accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of mitochondrial CoQ10 in isolated mitochondria. In the assay, mitochondrial suspensions are spiked with CoQ10-[(2)H6] internal standard, extracted with organic solvents, and CoQ10 quantified by LC-MS/MS using multiple reaction monitoring (MRM).
Collapse
Affiliation(s)
- Outi Itkonen
- Laboratory Division HUSLAB, Helsinki University Central Hospital, Haartmaninkatu 2, Helsinki, 00029, Finland,
| | | |
Collapse
|
8
|
Kishikawa N, Kuroda N. Analytical techniques for the determination of biologically active quinones in biological and environmental samples. J Pharm Biomed Anal 2014; 87:261-70. [DOI: 10.1016/j.jpba.2013.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/25/2022]
|
9
|
Duberley KEC, Hargreaves IP, Chaiwatanasirikul KA, Heales SJR, Land JM, Rahman S, Mills K, Eaton S. Coenzyme Q10 quantification in muscle, fibroblasts and cerebrospinal fluid by liquid chromatography/tandem mass spectrometry using a novel deuterated internal standard. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:924-930. [PMID: 23592193 DOI: 10.1002/rcm.6529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Neurological dysfunction is common in primary coenzyme Q10 (2,3-dimethoxy, 5-methyl, 6-polyisoprene parabenzoquinone; CoQ10 ; ubiquinone) deficiencies, the most readily treatable subgroup of mitochondrial disorders. Therapeutic benefit from CoQ10 supplementation has also been noted in other neurodegenerative diseases. CoQ10 can be measured by high-performance liquid chromatography (HPLC) in plasma, muscle or leucocytes; however, there is no reliable method to quantify CoQ10 in cerebrospinal fluid (CSF). Additionally, many methods use CoQ9 , an endogenous ubiquinone in humans, as an internal standard. METHODS Deuterated CoQ10 (d6 -CoQ10 ) was synthesised by a novel, simple, method. Total CoQ10 was measured by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using d6 -CoQ10 as internal standard and 5 mM methylamine as an ion-pairing reagent. Chromatography was performed using a Hypsersil GOLD C4 column (150 × 3 mm, 3 µm). RESULTS CoQ10 levels were linear over a concentration range of 0-200 nM (R(2) = 0.9995). The lower limit of detection was 2 nM. The inter-assay coefficient of variation (CV) was 3.6% (10 nM) and 4.3% (20 nM), and intra-assay CV 3.4% (10 nM) and 3.6% (20 nM). Reference ranges were established for CoQ10 in CSF (5.7-8.7 nM; n = 17), fibroblasts (57.0-121.6 pmol/mg; n = 50) and muscle (187.3-430.1 pmol/mg; n = 15). CONCLUSIONS Use of d6 -CoQ10 internal standard has enabled the development of a sensitive LC/MS/MS method to accurately determine total CoQ10 levels. Clinical applications of CSF CoQ10 determination include identification of patients with cerebral CoQ10 deficiency, and monitoring CSF CoQ10 levels following supplementation.
Collapse
Affiliation(s)
- Kate E C Duberley
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Itkonen O, Suomalainen A, Turpeinen U. Mitochondrial coenzyme Q10 determination by isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 2013; 59:1260-7. [PMID: 23640978 DOI: 10.1373/clinchem.2012.200196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain. Unlike most other respiratory chain disorders, CoQ10 deficiency is potentially treatable. We aimed to develop and validate an accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of mitochondrial CoQ10 in clinical samples. METHODS We used mitochondria isolated from muscle biopsies of patients (n = 166) suspected to have oxidative phosphorylation deficiency. We also used fibroblast mitochondria from 1 patient with CoQ10 deficiency and 3 healthy individuals. Samples were spiked with nonphysiologic CoQ10-[(2)H6] internal standard, extracted with 1-propanol and with ethanol and hexane (2 mL/5 mL), and CoQ10 quantified by LC-MS/MS. The method and sample stability were validated. A reference interval was established from the patient data. RESULTS The method had a limit of quantification of 0.5 nmol/L. The assay range was 0.5-1000 nmol/L and the CVs were 7.5%-8.2%. CoQ10 was stable in concentrated mitochondrial suspensions. In isolated mitochondria, the mean ratio of CoQ10 to citrate synthase (CS) activity (CoQ10/CS) was 1.7 nmol/U (95% CI, 1.6-1.7 nmol/U). We suggest a CoQ10/CS reference interval of 1.1-2.8 nmol/U for both sexes and all ages. The CoQ10/CS ratio was 5-fold decreased in fibroblast mitochondria from a patient with known CoQ10 deficiency due to recessive prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) mutations. CONCLUSIONS Normalization of mitochondrial CoQ10 concentration against citrate synthase activity is likely to reflect most accurately the CoQ10 content available for the respiratory chain. Our assay and the established reference range should facilitate the diagnosis of respiratory chain disorders and treatment of patients with CoQ10 deficiency.
Collapse
Affiliation(s)
- Outi Itkonen
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | |
Collapse
|
11
|
Turkowicz MJ, Karpińska J. Analytical problems with the determination of coenzyme Q10 in biological samples. Biofactors 2013; 39:176-85. [PMID: 23303649 DOI: 10.1002/biof.1058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/13/2012] [Indexed: 11/08/2022]
Abstract
The article discusses analytical problems related to the determination of coenzyme Q10 in biological samples. The assaying of coenzyme Q10 in complex samples, such as plasma, tissues, or food items requires meticulous sample preparation prior to final quantification. The process typically consists of the following steps: deproteinization, extraction, and ultimately reduction of extract volumes. At times drying under a gentle stream of neutral gas is applied. In the case of solid samples, a careful homogenization is also required. Each step of the sample preparation process can be a source of analytical errors that may lead to inaccurate results. The main aim of this work is to point to sources of analytical errors in the preparation process and their relation to physicochemical properties of coenzyme Q10. The article also discusses ways of avoiding and reducing the errors.
Collapse
Affiliation(s)
- Monika Joanna Turkowicz
- Voivodship Sanitary-Epidemiological Station in Bialystok, Food Examination Unit, Białystok, Poland.
| | | |
Collapse
|
12
|
Selective determination of ubiquinone in human plasma by HPLC with chemiluminescence reaction based on the redox cycle of quinone. Anal Bioanal Chem 2011; 400:381-5. [DOI: 10.1007/s00216-011-4662-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
|
13
|
Yuan B, Liu C, Xu P, Lin L, Pan C, Wang L, Xu H. Validated HPLC method for the quantitative determination of CoQ10 in dog plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2010; 25:1038-44. [DOI: 10.1002/bmc.1567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/08/2022]
|
14
|
Nováková L, Vlčková H. A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation. Anal Chim Acta 2009; 656:8-35. [DOI: 10.1016/j.aca.2009.10.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
|