1
|
Yoo J, Ahn J, Ha H, Claud Jonas J, Kim C, Ham Kim H. Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1269-1288. [PMID: 39250365 DOI: 10.1109/tuffc.2024.3456083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Acoustic tweezers have attracted attention in various fields of cell biology, including in vitro single-cell and intercellular mechanics. Compared with other tweezing technologies such as optical and magnetic tweezers, acoustic tweezers possess stronger forces and are safer for use in biological systems. However, due to the limited spatial resolution or limited size of target objects, acoustic tweezers have primarily been used to manipulate cells in vitro. To extend the advantages of acoustic tweezers to other levels (e.g., molecular and in vivo levels), researchers have recently developed various types of acoustic tweezers such as single-beam acoustic tweezers (SBATs), surface acoustic wave (SAW) tweezers, and acoustic-streaming tweezers. Among these, SBATs utilize a single-focused beam, making the transducer and system simple, noninvasive, and capable of producing strong forces compared with other types of tweezers. Depending on the acoustic beam pattern, SBATs can be classified into Rayleigh regime, Mie regime, and acoustic vortex with different trapping dynamics and application levels. In this review, we provide an overview of the principles and configuration of each type of SBAT, their applications ranging from molecular to in vivo studies, and their limitations and prospects. Thus, this review demonstrates the significance and potential of SBAT technology in biophysics and biomedical engineering.
Collapse
|
2
|
Driver R, Mishra S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Spectroscopic Analysis of an Antimalarial Drug’s (Quinine) Influence on Human Serum Albumin Reduction and Antioxidant Potential. Molecules 2022; 27:molecules27186027. [PMID: 36144764 PMCID: PMC9505252 DOI: 10.3390/molecules27186027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Quinine (Qi) is a well-known drug used in malaria therapy; it is also a potential anti-arrhythmic drug used in the treatment of calf cramps, rheumatoid arthritis, colds, and photodermatitis. Moreover, it is used in the food industry for the production of tonics. This study aimed to analyze the interaction between quinine and a transporting protein—human serum albumin (HSA)—as well as the influence of Qi on both protein reduction and antioxidant potential. It was found that Qi (via spectrofluorometric measurements and circular dichroism spectroscopy) binds to HSA with a low affinity and slightly affects the secondary structure of albumin. As demonstrated by the use of ABTS and FRAP assays, HSA has a higher antioxidant and reduction potential than Qi, while their mutual interaction results in a synergistic effect in antioxidant activity and reduction potential.
Collapse
|
4
|
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022; 43:955-963. [DOI: 10.1002/elps.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hana Mlčochová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
5
|
Recent advances in the determination of unbound concentration and plasma protein binding of drugs: Analytical methods. Talanta 2021; 225:122052. [DOI: 10.1016/j.talanta.2020.122052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
|
6
|
Label-free evaluation of small-molecule-protein interaction using magnetic capture and electrochemical detection. Anal Bioanal Chem 2019; 411:2111-2119. [PMID: 30739194 DOI: 10.1007/s00216-019-01636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
The evaluation of interaction between small molecules and protein is an important step in the discovery of new drugs and to study complex biological systems. In this work, an alternative method was presented to evaluate small-molecule-protein interaction by using ligand capture by protein-coated magnetic particles (MPs) and disposable electrochemical cells. The interaction study was conducted using [10]-gingerol from ginger rhizome and a transmembrane protein αVβ3 integrin. Initially, the electrochemical behavior of the natural compound [10]-gingerol was evaluated with the disposable carbon-based electrodes and presented an irreversible oxidation process controlled by diffusion. The analytical curve for [10]-gingerol was obtained in the range of 1.0 to 20.0 μmol L-1, with limit of detection of 0.26 μmol L-1. Then MPs coated with αVβ3 integrin were incubated with standard solutions and extracts of ginger rhizome for [10]-gingerol capture and separation. The bioconjugate obtained was dropped to the disposable electrochemical cells, keeping a permanent magnet behind the working electrode, and the binding process was evaluated by the electrochemical detection of [10]-gingerol. The assay method proposed was also employed to calculate the [10]-gingerol-αVβ3 integrin association constant, which was calculated as 4.3 × 107 M-1. The method proposed proved to be a good label-free alternative to ligand-protein interaction studies. Graphical abstract ᅟ.
Collapse
|
7
|
Fei F, Sun H, Cheng X, Liu J, Wang J, Li Q, Zhang Y. Rapid screening and identification of bioactive compounds specifically binding to beta 2-adrenoceptor from San-ao decoction using affinity magnetic fine particles coupled with high-performance liquid chromatography-mass spectrometry. Chin Med 2018; 13:49. [PMID: 30258489 PMCID: PMC6154427 DOI: 10.1186/s13020-018-0207-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023] Open
Abstract
Background San-ao decoction (SAD) has been widely used in Chinese medicine against respiratory diseases, such as asthma and rhinallergosis. The bioactive compounds for such pharmacological action remain unknown. Methods We developed a methodology to isolate the bioactive compounds of SAD. The assay involved the immobilization of beta 2-adrenoceptor (β 2-AR) onto magnetic fine particles, the capture of target compounds by the immobilized receptor, the identification of the receptor bound compounds by reversed-phase high-performance liquid chromatography coupled with tandem mass spectrometry. Results Vicenin, shaftoside, isoshaftoside, liquiritin apioside and isoliquiritin apioside were identified as β 2-AR ligands in SAD extract. The binding of these compounds to β 2-AR occurred on serine169, serine170 and phenylalanine256 of the receptor. Conclusions The developed methodology has high stability and specificity for recognizing and isolating target compounds. It is an alternative method for rapidly screening bioactive compounds of immobilized receptor from Chinese prescriptions.
Collapse
Affiliation(s)
- Fuhuan Fei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| | - Huanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| | - Xixi Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| | - Jiajun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069 China
| |
Collapse
|
8
|
Design of an Affibody-Based Recognition Strategy for Human Epidermal Growth Factor Receptor 2 (HER2) Detection by Electrochemical Biosensors. CHEMOSENSORS 2016. [DOI: 10.3390/chemosensors4040023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules 2016; 21:molecules21111516. [PMID: 27845727 PMCID: PMC6274472 DOI: 10.3390/molecules21111516] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique.
Collapse
Affiliation(s)
- Rongjie Zhuo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Hao Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ningning Liu
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Magnetic separation techniques in sample preparation for biological analysis: A review. J Pharm Biomed Anal 2014; 101:84-101. [DOI: 10.1016/j.jpba.2014.04.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/16/2022]
|
11
|
de Moraes MC, Vanzolini KL, Cardoso CL, Cass QB. New trends in LC protein ligand screening. J Pharm Biomed Anal 2014; 87:155-66. [DOI: 10.1016/j.jpba.2013.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
12
|
Immobilized magnetic beads based multi-target affinity selection coupled with high performance liquid chromatography-mass spectrometry for screening anti-diabetic compounds from a Chinese medicine "Tang-Zhi-Qing". J Pharm Biomed Anal 2013; 78-79:190-201. [PMID: 23501439 DOI: 10.1016/j.jpba.2013.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022]
Abstract
We developed an approach for screening bioactive compounds from botanical drug using multiple target-immobilized magnetic beads coupled with high performance liquid chromatography-mass spectrometry. This novel approach was called magnetic beads based multi-target affinity selection-mass spectrometry (MT-ASMS). It can enrich and identify different types of ligands from mixture extracts. Multiple targets (maltase, invertase, lipase) were immobilized on the magnetic beads by covalent linkage using 1-(3-dimethyl-aminopropyl)-3-ethyl-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as reaction reagents, respectively. The properties of enzyme conjugated magnetic beads were characterized using transmission electron microscopy, X-ray diffractometer and vibration sample magnetometer. Several factors including pH, ion strength, incubation time and temperature were optimized using three known ligands (caffeic acid, ferulic acid, and hesperidin). The established MT-ASMS approach was applied to screening for ligands from a Chinese medicine "Tang-Zhi-Qing", which was used to treat type II diabetes in China. Seven bound compounds were identified via liquid chromatography-mass spectrometry (LC/MS). Five active compounds including 2,3,4,6-tetra-O-galloyl-D-glucose, 1,2,3,4-tetra-O-galloyl-D-glucose, 1,2,3,4,6-penta-O-galloyl-d-glucose, quercetin-3-O-β-D-glucuronide and quercetin-3-O-β-D-glucoside were identified and their activities were validated by conventional inhibitory assay. Our findings suggested that the proposed approach is efficient in screening compounds with multiple activities from extracts of botanical drugs.
Collapse
|
13
|
Vuignier K, Veuthey JL, Carrupt PA, Schappler J. Characterization of drug-protein interactions by capillary electrophoresis hyphenated to mass spectrometry. Electrophoresis 2012; 33:3306-15. [DOI: 10.1002/elps.201200116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/23/2012] [Accepted: 06/06/2012] [Indexed: 11/10/2022]
|
14
|
Tao Y, Zhang Y, Cheng Y, Wang Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr 2012; 27:148-55. [PMID: 22674728 DOI: 10.1002/bmc.2761] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 11/12/2022]
Abstract
α-Glucosidase plays important roles in the digestion and absorption of carbohydrates in the small intestine. The inhibition of α-glucosidase is regarded as a potential way to treat diabetes. We established an approach to screening α-glucosidase inhibitors from medicinal plants using enzyme-coated magnetic bead. Using 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide and N-hydroxysuccinimide as reaction reagents, α-glucosidase was immobilized on the magnetic beads by covalent linkage. The conjugation of α-glucosidase to the magnetic beads was characterized using scanning electron microscope and X-ray diffractometer. The proposed approach was applied in fishing potential α-glucosidase inhibitors from extract of Morus alba, a Chinese medicinal plant. The structures of potential active compounds were identified via liquid chromatography-mass spectrometry and nuclear magnetic resonance. The results demonstrated that two flavonoids (isoquercitrin and astragalin) could bind to α-glucosidase, which was confirmed via conventional α-glucosidase inhibitory assay. Our findings suggested that enzyme-coated magnetic beads may be suitable for discovering active compounds from medicinal plants.
Collapse
Affiliation(s)
- Yi Tao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
15
|
Xiao J, Kai G. A Review of Dietary Polyphenol-Plasma Protein Interactions: Characterization, Influence on the Bioactivity, and Structure-Affinity Relationship. Crit Rev Food Sci Nutr 2012; 52:85-101. [PMID: 21991992 DOI: 10.1080/10408398.2010.499017] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
KATAOKA H. Current Developments and Future Trends in Solid-phase Microextraction Techniques for Pharmaceutical and Biomedical Analyses. ANAL SCI 2011; 27:893-905. [DOI: 10.2116/analsci.27.893] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Marszałł MP, Buciński A, Goryński K, Proszowska A, Kaliszan R. Magnetic beads method for determination of binding of drugs to melanin. J Chromatogr A 2011; 1218:229-36. [DOI: 10.1016/j.chroma.2010.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
18
|
Lombardi D, Dittrich PS. Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions. Anal Bioanal Chem 2010; 399:347-52. [DOI: 10.1007/s00216-010-4302-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 11/29/2022]
|
19
|
Marszałł MP. Application of magnetic nanoparticles in pharmaceutical sciences. Pharm Res 2010; 28:480-3. [PMID: 20859657 PMCID: PMC3040350 DOI: 10.1007/s11095-010-0284-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/14/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy Collegium Medicum, Nicolaus Copernicus University, ul M Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland.
| |
Collapse
|
20
|
Marszałł MP, Buciński A, Kruszewski S, Ziomkowska B. A new approach to determine camptothecin and its analogues affinity to human serum albumin. J Pharm Sci 2010; 100:1142-6. [PMID: 20740669 DOI: 10.1002/jps.22318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 11/07/2022]
Abstract
A novel and fast method for the determination of the binding kinetic data of ligand to protein has been developed. A new tool including human serum albumin-coated magnetic beads (HSA-MB) was used to determine the affinity of camptothecin (CPT) and its analogues to HSA. From the biological activity point of view, these compounds have potential anticancer activity. However, the numerous studies indicate that some of these analogues have a strong affinity to plasma proteins stopping their effective therapy. Thus, the problem of plasma protein binding behavior of CPT's analogues was the subject of this study.
Collapse
Affiliation(s)
- Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, M. Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland.
| | | | | | | |
Collapse
|