1
|
Watanabe H, Shibuya M, Shibahara N, Ruike Y, Sampei Z, Haraya K, Tachibana T, Wakabayashi T, Sakamoto A, Tsunoda H, Murao N. A Novel Total Drug Assay for Quantification of Anti-C5 Therapeutic Monoclonal Antibody in the Presence of Abundant Target. AAPS JOURNAL 2021; 23:21. [PMID: 33415498 DOI: 10.1208/s12248-020-00539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
SKY59 or RO7112689 is a humanized monoclonal antibody against complement protein C5 with pH-dependent C5-binding and neonatal Fc receptor-mediated recycling capabilities, which result in long-lasting neutralization of C5. We developed and validated a novel total drug assay for quantification of target-binding competent SKY59 in the presence of endogenous C5 in cynomolgus monkey plasma. The target-binding competent SKY59 was determined after complex formation by the addition of recombinant monkey C5 using goat anti-human IgG-heavy chain monkey-adsorbed polyclonal antibody as a capture antibody and rabbit anti-C5 monoclonal antibody (mAb) non-competing with SKY59 for detection. The total SKY59 assay was shown to be accurate and precise over the range of 0.05-3.2 μg/mL as well as be tolerant to more than 400 μg/mL of C5 (~ 3000-fold molar excess of target). We also developed and validated a total C5 assay, confirmed selectivity and parallelism, and verified the utility of recombinant monkey C5 for the total C5 assay as well as the total SKY59 assay. Furthermore, we used these validated methods to measure SKY59 and C5 concentrations in cynomolgus monkey plasma samples in a toxicology study. This total drug assay can be applied not only to other antibody therapeutics against shed/soluble targets when a non-competing reagent mAb is available but also for clinical studies when a reagent mAb specific for engineered Fc region on a therapeutic mAb is available.
Collapse
Affiliation(s)
- Hiroo Watanabe
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Mitsuko Shibuya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Norihito Shibahara
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Yoshinao Ruike
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tatsuhiko Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tetsuya Wakabayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Naoaki Murao
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
2
|
Techniques for quantitative LC–MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture. Bioanalysis 2016; 8:847-56. [DOI: 10.4155/bio.16.24] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
LC–MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC–MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC–MS/MS analysis. One area of tremendous potential for immunocapture-LC–MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.
Collapse
|
3
|
Abstract
An adequate bioanalytical support for a typical biotherapeutic requires a number of assays, including those to measure drug concentration and to assess induction of specific immune responses. Ligand-binding assays are the most commonly used platform in bioanalysis of biotherapeutics. Ligand-binding assays are frequently designed to detect appropriate analytes in complex biological matrices with limited or no sample pretreatment steps. The complex composition of the test matrix is highly diverse and varies from normal to disease populations. Additional post-treatment changes are often observed, including induction of antidrug antibodies. Due to potential interaction of biological matrix components, for example, rheumatoid factors, heterophilic antibodies and human anti-animal antibodies, with the test analyte or assay reagents, ligand-binding assays are often subjected to various degrees of matrix interferences that lead to an erroneous under- or over-reporting of the analyte concentration. Impact of various matrix components and practical means designed to mitigate interferences are discussed in this Review.
Collapse
|
4
|
Targeting an acid labile aspartyl–prolyl amide bond as a viable alternative to trypsin digestion to generate a surrogate peptide for LC–MS/MS analysis. Bioanalysis 2014; 6:2985-98. [DOI: 10.4155/bio.14.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: FGF21-AdPKE is a fusion protein and functionally inactivated in vivo by cleavage around the C-terminus. It is important to quantify the intact active protein in serum. Results & discussion: Taking advantage of a uniquely acid-labile aspartyl–prolyl amide bond, we developed an acid hydrolysis procedure based on heating FGF21-AdPKE in dilute formic acid to generate a surrogate peptide encompassing the last 17 amino acids at the C-terminus. The monkey serum samples were extracted with an immunocapture procedure with an antibody specific for AdPKE. The calibration range was 200–50000 ng/ml. The assay accuracy and precision were between 92.8–99.8% and 3.9–14.5%, respectively. The method was applied to analyze incurred serum samples from a cynomolgus monkey toxicokinetic study involving administration of FGF21-AdPKE. Conclusion: A method of combining immunocapture and acid hydrolysis to quantify a therapeutic protein in biological fluids was developed.
Collapse
|
5
|
Dai S, Schantz A, Clements-Egan A, Cannon M, Shankar G. Development of a method that eliminates false-positive results due to nerve growth factor interference in the assessment of fulranumab immunogenicity. AAPS JOURNAL 2014; 16:464-77. [PMID: 24590506 DOI: 10.1208/s12248-014-9581-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
Abstract
Fulranumab, a human IgG2 monoclonal antibody that neutralizes nerve growth factor (NGF), is currently in development for the treatment of pain. Our initial immunogenicity test method was found to be prone to NGF interference, leading to a high apparent incidence of anti-drug antibody (ADA) in phase 1 studies. The ADA immunoassay comprised a homogeneous bridging electrochemiluminescence (ECL) format with biotin and ruthenium-labeled fulranumab bound together ("bridged") by ADA in test samples for detection. In this assay, NGF produced a false-positive signal due to its ability to bridge fulranumab molecules. Thus, we developed a specificity assay to eliminate the NGF false-positive results. We encountered the challenge of eliminating drug interference as well as drug target interference, and discovered that the acid-dissociation-based pretreatment of samples used for mitigating drug interference dramatically increased drug target interference. Several strategies were investigated to eliminate the NGF interference; yet only one strategy specifically removed NGF and produced true fulranumab-specific ADA results by using competitive inhibition with fulranumab and utilizing an alternative NGF binding antibody to eliminate NGF interference. Using this new method, we confirmed that the high apparent anti-fulranumab antibody incidence (>60%) in clinical study samples was in fact due to fulranumab-bound NGF released during the acid-dissociation step of the ADA testing method. We conclude that our revised method accurately identifies anti-fulranumab antibodies by incorporating steps to eliminate fulranumab and NGF interference. We advise that acid-dissociation pretreatment must not be universally applied to improve ADA assays without investigating its bioanalytical risks versus benefits.
Collapse
Affiliation(s)
- Sheng Dai
- Biologics Clinical Pharmacology, Janssen Research and Development, LLC, 1400 McKean Road, Spring House, Pennsylvania, 19477, USA,
| | | | | | | | | |
Collapse
|
6
|
Development and validation of an ELISA at acidic pH for the quantitative determination of IL-13 in human plasma and serum. DISEASE MARKERS 2013; 35:465-74. [PMID: 24222716 PMCID: PMC3810116 DOI: 10.1155/2013/290670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/25/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022]
Abstract
A novel sandwich ELISA for the quantitative and sensitive determination of IL-13 in human serum and plasma was established. The assay employs an incubation step at acidic pH, which was shown to decrease nonspecific binding and interference from IL-13 binding proteins. The assay was validated and was shown to be accurate and precise over the entire quantification range (0.59 to 68.4 pg/mL in human EDTA plasma). The validated assay was successfully applied to samples from healthy volunteers and patients with atopic seasonal rhinitis. The assay is suitable for use in clinical trials to monitor efficacy or pharmacodynamic effects of drug candidates.
Collapse
|
7
|
Minimizing target interference in PK immunoassays: new approaches for low-pH-sample treatment. Bioanalysis 2013; 5:1897-910. [DOI: 10.4155/bio.13.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Quantitating total levels of monoclonal antibody (mAb) biotherapeutics in serum using ELISA may be hindered by soluble targets. Results: We developed two low-pH-sample-pretreatment techniques to minimize target interference. The first procedure involves sample pretreatment at pH <3.0 before neutralization and analysis in a target capture ELISA. Careful monitoring of acidification time is required to minimize potential impact on mAb detection. The second approach involves sample dilution into mild acid (pH ∼4.5) before transferring to an anti-human capture-antibody-coated plate without neutralization. Analysis of target–drug and drug–capture antibody interactions at pH 4.5 indicated that the capture antibody binds to the drug, while the drug and the target were dissociated. Using these procedures, total biotherapeutic levels were accurately measured when soluble target was >30-fold molar excess. Conclusion: These techniques provide alternatives for quantitating mAb biotherapeutics in the presence of a target when standard acid-dissociation procedures are ineffective.
Collapse
|
8
|
Deng R, Jin F, Prabhu S, Iyer S. Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin Drug Metab Toxicol 2012; 8:141-60. [PMID: 22248267 DOI: 10.1517/17425255.2012.643868] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The number of monoclonal antibodies available for clinical use and under development has dramatically increased in the last 10 years. Understanding their pharmacokinetics and pharmacodynamics is essential for selecting the right clinical candidate, correct dose and regimen for a target indication. AREAS COVERED This article reviews the existing literature and knowledge of monoclonal antibodies. Specifically, the authors discuss monoclonal antibodies with respect to their pharmacokinetics (including absorption, distribution and elimination) and their pharmacodynamics. The authors also look at the pharmacokinetic/pharmacodynamic relationship, scaling from preclinical to clinical studies and selection of the first-in-human dose. EXPERT OPINION Monoclonal antibodies have complex pharmacokinetic and pharmacodynamic characteristics that are dependent on several factors. Therefore, it is important to improve our understanding of the pharmacokinetics and pharmacodynamics of monoclonal antibodies from a basic research standpoint. It is also equally important to apply mechanistic pharmacokinetic/pharmacodynamic models to interpret the experimental results and facilitate efforts to predict the safety and efficacy of monoclonal antibodies.
Collapse
Affiliation(s)
- Rong Deng
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, Inc., 1 DNA Way, Mail Stop 463A, South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
9
|
Chilewski SD, Follmer T, Ansbro F, Chen D, Zhao Q, Teyral J, Bakhtiar R, Verch T. VALIDATION OF PRECLINICAL PHARMACOKINETIC AND IMMUNOGENICITY ASSAYS FOR AN ANTI-PCSK9 ANTIBODY. J Immunoassay Immunochem 2011; 32:296-317. [PMID: 21728822 DOI: 10.1080/15321819.2011.569046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Thy Follmer
- a Merck & Co., Inc. , West Point, Pennsylvania, USA
| | | | - Dave Chen
- a Merck & Co., Inc. , West Point, Pennsylvania, USA
| | - Qinjian Zhao
- a Merck & Co., Inc. , West Point, Pennsylvania, USA
| | | | - Ray Bakhtiar
- a Merck & Co., Inc. , West Point, Pennsylvania, USA
| | | |
Collapse
|
10
|
Verch T, Chilewski S, Bouaraphan S, Yarovoi H, Yin KC, Chen D, Washabaugh MW. Pharmacokinetic immunoassay methods in the presence of soluble target. J Immunol Methods 2010; 361:75-81. [DOI: 10.1016/j.jim.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/16/2010] [Accepted: 07/29/2010] [Indexed: 01/09/2023]
|