1
|
Lo Faro AF, Sprega G, Beradinelli D, Tini A, Poyatos L, Papaseit E, Berretta P, Di Giorgi A, Farre M, Takaishvili N, Farkas T, Busardò FP, Chankvetadze B. Development of enantioselective high-performance liquid chromatography-tandem mass spectrometry method for the quantitative determination of 3,4-methylenedioxy-methamphetamine (MDMA) and its phase-1 metabolites in human biological fluids. J Pharm Biomed Anal 2024; 238:115768. [PMID: 37979525 DOI: 10.1016/j.jpba.2023.115768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 11/20/2023]
Abstract
In the present study enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed for the quantitative determination of 3,4-methylenedioxy-methamphetamine (MDMA) and its major phase-1 metabolites 4-hydroxy-3-methoxyamphetamine (HMA), 4-hydroxy-3-methoxymethamphetamine (HMMA) and 3,4-methylenedioxyamphetamine (MDA) in human plasma, sweat, oral fluid (OF) and urine. The simultaneous separation of all these compounds and their respective enantioseparation was accomplished on two polysaccharide-based chiral columns. The Lux AMP column with a proprietary chiral selector enabled baseline separation of the enantiomers of MDMA, HMA and HMMA while MDA enantiomers could not be separated with this column under the experimental conditions used in this study. The Lux i-Amylose-3 column based on amylose tris(5-chloro-3-methylphenylcarbamate) as chiral selector baseline-separated the enantiomers of MDMA, HMMA and MDA while the enantiomers of HMA could not be separated. Thus, the various samples were analyzed by using both columns alternatively in combinations with acetonitrile containing 25% (v/v) 5 mM ammonium bicarbonate buffer at pH 11.0 as mobile phase. Analysis time was less than 4 min with the Lux AMP column and less than 6 min with the Lux i-Amylose-3 column. Both methods were validated and applied to the enantioselective determination of MDMA and its phase-I metabolites in human biological fluids, and enantioselective metabolism of MDMA was confirmed.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Diletta Beradinelli
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Anstasio Tini
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Lourdes Poyatos
- Servei de Farmacologia Clínica, Hospital Universitari Germans Trias i Pujol (HUGTiP, IGTP)- Universitat Aut`onoma de Barcelona, Unitat Docent HUGTiP, Badalona, Spain
| | - Esther Papaseit
- Servei de Farmacologia Clínica, Hospital Universitari Germans Trias i Pujol (HUGTiP, IGTP)- Universitat Aut`onoma de Barcelona, Unitat Docent HUGTiP, Badalona, Spain
| | - Paolo Berretta
- National Centre on Addiction and Doping, Istituto Superiore di Sanit`a, Rome, Italy
| | - Alessandro Di Giorgi
- National Centre on Addiction and Doping, Istituto Superiore di Sanit`a, Rome, Italy
| | - Magì Farre
- Servei de Farmacologia Clínica, Hospital Universitari Germans Trias i Pujol (HUGTiP, IGTP)- Universitat Aut`onoma de Barcelona, Unitat Docent HUGTiP, Badalona, Spain
| | - Nino Takaishvili
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, 0179 Tbilisi, Georgia
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance 90501, CA, USA
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | - Bezhan Chankvetadze
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, 0179 Tbilisi, Georgia
| |
Collapse
|
2
|
Sherwood AM, Burkhartzmeyer EK, Williamson SE, Faley MT. Swim in the Chiral Pool: MDMA and MDA Enantiomers from Alanine-Derived Precursors. ACS OMEGA 2023; 8:22132-22137. [PMID: 37360440 PMCID: PMC10286248 DOI: 10.1021/acsomega.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
A divergent two-step process has provided access to optically pure enantiomers of MDMA and MDA, clinically relevant phenylisopropylamine entactogens. Target compounds were synthesized from commercially available alanine-derived aziridines. Critical process parameters were identified, and the reactions were optimized to avoid chromatographic purifications toward gram-scale isolations, providing (R)-(-)-MDMA, (S)-(+)-MDMA, (R)-(-)-MDA, and (S)-(+)-MDA each in greater than 98% purity by UPLC, >99% enantiomeric excess, and net yields between 50 and 60% for the complete process.
Collapse
|
3
|
Pinto MM, Fernandes C, Tiritan ME. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules 2020; 25:E1931. [PMID: 32326326 PMCID: PMC7221958 DOI: 10.3390/molecules25081931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Enantiomeric separation is a key step in the development of a new chiral drug. Preparative liquid chromatography (LC) continues to be the technique of choice either during the drug discovery process, to achieve a few milligrams, or to a scale-up during the clinical trial, needing kilograms of material. However, in the last few years, instrumental and technical developments allowed an exponential increase of preparative enantioseparation using other techniques. Besides LC, supercritical fluid chromatography (SFC) and counter-current chromatography (CCC) have aroused interest for preparative chiral separation. This overview will highlight the importance to scale-up chiral separations in Medicinal Chemistry, especially in the early stages of the pipeline of drugs discovery and development. Few examples within different methodologies will be selected, emphasizing the trends in chiral preparative separation. The advantages and drawbacks will be critically discussed.
Collapse
Affiliation(s)
- Madalena M.M. Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Maria E. Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), 4585-116 Gandra PRD, Portugal
| |
Collapse
|
4
|
Zhang X, Wei F, Zhao Y, Wang Q. Fine optimization of twin-column recycling chromatography with a solvent gradient for the removal of minor impurities. J Chromatogr A 2020; 1609:460443. [DOI: 10.1016/j.chroma.2019.460443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
5
|
Willson C. Sympathomimetic amine compounds and hepatotoxicity: Not all are alike-Key distinctions noted in a short review. Toxicol Rep 2018; 6:26-33. [PMID: 30581759 PMCID: PMC6288410 DOI: 10.1016/j.toxrep.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sympathomimetic amine compounds are often pooled together and incorrectly assumed to be interchangeable with respect to potential adverse effects. A brief and specific review of sympathomimetic compounds and one instance (i.e., hepatotoxicity) where these compounds have been improperly grouped together is covered. A review of the proposed mechanisms through which known hepatotoxic sympathomimetic agents (e.g., 3,4-methylenedioxymethamphetamine or MDMA, methamphetamine and amphetamine) cause liver injury, along with a corresponding review of in vitro data, interventional data, animal model studies and observational data allow for a comparison/contrast of different agents and reveals a lack of potential toxicity for some agents (e.g., pseudoephedrine, phenylephrine, ephedrine, 1,3-dimethylamylamine, phentermine) in this broad category. Data show that compounds within the broad group of sympathomimetics display divergent pharmacological and toxicological profiles and can be clearly distinguished with respect to liver injury. These data serve as a reminder to clinicians and others, that even small structural differences between molecules can lead to drastically different pharmacological/toxicological profiles and that one should not assume that all sympathomimetic agents are hepatotoxic. Such assumptions could lead to diagnostic errors and incorrect or insufficient treatment.
Collapse
|
6
|
de Bragança AC, Moreau RLM, de Brito T, Shimizu MHM, Canale D, de Jesus DA, Silva AMG, Gois PH, Seguro AC, Magaldi AJ. Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage. PLoS One 2017; 12:e0179199. [PMID: 28678861 PMCID: PMC5497951 DOI: 10.1371/journal.pone.0179199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. METHODS Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). RESULTS Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. CONCLUSION Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia.
Collapse
Affiliation(s)
- Ana C. de Bragança
- Clinical Hospital, School of Medicine-Department of Nephrology- Basic Research Laboratory-LIM12, University of Sâo Paulo, SP, Brazil
| | - Regina L. M. Moreau
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, University of São Paulo, SP, Brazil
| | - Thales de Brito
- School of Medicine, Institute of Tropical Medicine, Department of Pathology, University of São Paulo, SP, Brazil
| | - Maria H. M. Shimizu
- School of Medicine, Department of Nephrology, University of Sâo Paulo, SP, Brazil
| | - Daniele Canale
- School of Medicine, Department of Nephrology, University of Sâo Paulo, SP, Brazil
| | - Denise A. de Jesus
- School of Medicine, Department of Nephrology, University of Sâo Paulo, SP, Brazil
| | - Ana M. G. Silva
- School of Medicine, Institute of Tropical Medicine, Department of Pathology, University of São Paulo, SP, Brazil
| | - Pedro H. Gois
- Clinical Hospital, School of Medicine-Department of Nephrology- Basic Research Laboratory-LIM12, University of Sâo Paulo, SP, Brazil
| | - Antonio C. Seguro
- Clinical Hospital, School of Medicine-Department of Nephrology- Basic Research Laboratory-LIM12, University of Sâo Paulo, SP, Brazil
| | - Antonio J. Magaldi
- Clinical Hospital, School of Medicine-Department of Nephrology- Basic Research Laboratory-LIM12, University of Sâo Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
7
|
Barreiro JC, Paixão MW, Lourenço TC, Cass QB, Venâncio T. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA) by an Immobilized Polysaccharide-Based Chiral Phase. PLoS One 2016; 11:e0162892. [PMID: 27668862 PMCID: PMC5036802 DOI: 10.1371/journal.pone.0162892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR) was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR) titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R)-enantiomer, which is the second one to elute at the chromatographic conditions.
Collapse
Affiliation(s)
- Juliana C. Barreiro
- Department of Chemistry, Federal University of São Carlos, São Paulo, Brazil
- * E-mail:
| | - Márcio W. Paixão
- Department of Chemistry, Federal University of São Carlos, São Paulo, Brazil
| | | | - Quezia B. Cass
- Department of Chemistry, Federal University of São Carlos, São Paulo, Brazil
| | - Tiago Venâncio
- Department of Chemistry, Federal University of São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Llabrés S, García-Ratés S, Cristóbal-Lecina E, Riera A, Borrell JI, Camarasa J, Pubill D, Luque FJ, Escubedo E. Molecular basis of the selective binding of MDMA enantiomers to the alpha4beta2 nicotinic receptor subtype: Synthesis, pharmacological evaluation and mechanistic studies. Eur J Med Chem 2014; 81:35-46. [DOI: 10.1016/j.ejmech.2014.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Padivitage NLT, Dodbiba E, Breitbach ZS, Armstrong DW. Enantiomeric separations of illicit drugs and controlled substances using cyclofructan-based (LARIHC) and cyclobond I 2000 RSP HPLC chiral stationary phases. Drug Test Anal 2013; 6:542-51. [PMID: 24115758 DOI: 10.1002/dta.1534] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/10/2022]
Abstract
Recently a novel class of chiral stationary phases (CSPs) based on cyclofructan (CF) has been developed. Cyclofructans are cyclic oligosaccharides that possess a crown ether core and pendent fructofuranose moieties. Herein, we evaluate the applicability of these novel CSPs for the enantiomeric separation of chiral illicit drugs and controlled substances directly without any derivatization. A set of 20 racemic compounds were used to evaluate these columns including 8 primary amines, 5 secondary amines, and 7 tertiary amines. Of the new cyclofructan-based LARIHC columns, 14 enantiomeric separations were obtained including 7 baseline and 7 partial separations. The LARIHC CF6-P column proved to be the most useful in separating illicit drugs and controlled substances accounting for 11 of the 14 optimized separations. The polar organic mode containing small amounts of methanol in acetonitrile was the most useful solvent system for the LARIHC CF6-P CSP. Furthermore, the LARIHC CF7-DMP CSP proved to be valuable for the separation of the tested chiral drugs resulting in four of the optimized enantiomeric separations, whereas the CF6-RN did not yield any optimum separations. The broad selectivity of the LARIHC CF7-DMP CSP is evident as it separated primary, secondary and tertiary amine containing chiral drugs. The compounds that were partially or un-separated using the cyclofructan based columns were screened with a Cyclobond I 2000 RSP column. This CSP provided three baseline and six partial separations.
Collapse
|