1
|
Chen G, Butani N, Ghosh R. Fast and high-resolution fractionation of positional isomers of a PEGylated protein using membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123292. [DOI: 10.1016/j.jchromb.2022.123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
|
2
|
Lin W, Yin L, Sun T, Wang T, Xie Z, Gu J, Jing X. The Effect of Molecular Structure on Cytotoxicity and Antitumor Activity of PEGylated Nanomedicines. Biomacromolecules 2018; 19:1625-1634. [PMID: 29608275 DOI: 10.1021/acs.biomac.8b00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fundamental studies on the cellular uptake and drug release of PEGylated nanomedicines are beneficial to understand their fate in vivo and construct ideal nanoparticle formulations. In this work, the detailed metabolic process of PEGylated doxorubicin (Dox) nanomedicines were investigated via confocal laser scanning microscopy (CLSM), flow cytometry (FCM), cytotoxicity test, fluorescence imaging in vivo (FLIV) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Among them, only LC-MS/MS could accurately determine the content of PEGylated Dox and Dox in vitro and in vivo. To the best of our knowledge, this was the first time the PEGylated Dox and released Dox were simultaneously quantified. The interplay of molecular structures, cellular uptake, drug release, and antitumor effect was well characterized. PEG with high molecular weight impeded the cellular uptake of nanoparticles, and the acid-labile hydrazone bond between Dox and PEG promoted Dox release significantly. Cellular uptake and drug release play decisive roles in cytotoxicity and antitumor effect, as evidenced by LC-MS/MS. We emphasized that LC-MS/MS would be a practicable method to quantify PEGylated drugs without complex tags, which could be more in-depth to understand the interaction between PEGylated nanomedicines and their antitumor efficacy.
Collapse
Affiliation(s)
- Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Tingting Wang
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China
| |
Collapse
|
3
|
Dias PVS, Arthuso FS, Oliveira JE, Suzuki MF, Sousa JM, Ribela MTCP, Bartolini P, Soares CRJ. Determination of recombinant Interferon-α2 in E. coli periplasmic extracts by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:193-198. [PMID: 29179059 DOI: 10.1016/j.jchromb.2017.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/09/2017] [Accepted: 11/18/2017] [Indexed: 11/30/2022]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) has been used to analyze Interferon α-2 (IFN-α2) as a pure protein or as a pharmaceutical preparation: a method for analyzing periplasmic IFN-α2 directly in osmotic shock extract has, however, never been reported. This work describes an RP-HPLC methodology for the qualitative and quantitative analysis of human IFN-α2a and IFN-α2b directly in bacterial periplasmic extracts or in purified preparations. The analytical method has been set up and validated for accuracy, precision, linearity, sensitivity and specificity. A recovery test indicated an average bias of ∼1%, intra-day and inter-day quantitative determinations presented relative standard deviations always≤5%, while the working sensitivity was of ∼0.3μg of IFN-α2 (RSD=5%). The method proved to be suitable for detecting and quantifying also glycosylated and oxidized forms and N-methionylated IFN-α2 molecules, it was, however, not able to distinguish between IFN-α2a and IFN-α2b. This rapid methodology allows the application of RP-HPLC as a powerful tool to monitor the production yield and quality of IFN-α2 in osmotic shock fluids, right after, or even during the fermentation process.
Collapse
Affiliation(s)
- Paulo V S Dias
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Fernanda S Arthuso
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - José M Sousa
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Maria Teresa C P Ribela
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil.
| |
Collapse
|
6
|
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A 2014; 1335:81-103. [DOI: 10.1016/j.chroma.2013.11.057] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|