1
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Vairagkar U, Mirza Y. Antagonistic Activity of Antimicrobial Metabolites Produced from Seaweed-Associated Bacillus amyloliquefaciens MTCC 10456 Against Malassezia spp. Probiotics Antimicrob Proteins 2021; 13:1228-1237. [PMID: 33523421 DOI: 10.1007/s12602-021-09742-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Members of the genus Malassezia are known to be opportunistic pathogens responsible for causing skin disorders such as seborrheic dermatitis or dandruff, pityriasis versicolor, folliculitis, atopic dermatitis, and psoriasis. Due to the side effects caused by prolonged use of current topical antifungal agents, development of an alternative treatment is necessary. Fermentative production of antimicrobial metabolites from Bacillus amyloliquefaciens MTCC 10456 was carried out, and their antagonistic activity against Malassezia furfur and Malassezia globosa was evaluated. The antifungal metabolites were isolated by acid precipitation, and bioassay-guided simultaneous separation of the antimicrobial compounds was done by reversed-phase high-performance liquid chromatography (RP-HPLC). The fraction which demonstrated antifungal activity consisted of bacilysin, homologues of bacillomycin D, and members of the macrolactin family. The presence of bacilysin was detected using specific inhibitor assays and homologues of bacillomycin D, and macrolactins were identified using liquid chromatography/high-resolution electrospray ionization-mass spectrometry (LC/HRESI-MS/MS) analysis. Synergism among the identified compounds was observed which enhanced the antagonistic activity against Malassezia spp. To our knowledge, this is the first study to report the co-production and separation of members of macrolactin antibiotics, lipopeptides such as bacillomycin D and dipeptide antibiotic bacilysin, by any Bacillus strain from marine environment. Activity of individual compounds against Malassezia has been reported which may facilitate their application in the field of dermatology and in cosmetic products.
Collapse
Affiliation(s)
- Uttara Vairagkar
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited) 402/403/1098, Urawade, Pirangut, Mulshi, Pune, 412115, Maharashtra, India.,Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Yasmin Mirza
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited) 402/403/1098, Urawade, Pirangut, Mulshi, Pune, 412115, Maharashtra, India.
| |
Collapse
|
3
|
Characterization of CGK012 in rat plasma by high performance liquid chromatography and mass spectrometry (HPLC–MS/MS): Application to a pharmacokinetic study. J Pharm Biomed Anal 2020; 189:113458. [DOI: 10.1016/j.jpba.2020.113458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023]
|
4
|
Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:2038-2053. [PMID: 31287310 DOI: 10.1021/acs.jnatprod.9b00110] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus subtilis is widely underappreciated for its inherent biosynthetic potential. This report comprehensively summarizes the known bioactive secondary metabolites from B. subtilis and highlights potential applications as plant pathogen control agents, drugs, and biosurfactants. B. subtilis is well known for the production of cyclic lipopeptides exhibiting strong surfactant and antimicrobial activities, such as surfactins, iturins, and fengycins. Several polyketide-derived macrolides as well as nonribosomal peptides, dihydroisocoumarins, and linear lipopeptides with antimicrobial properties have been reported, demonstrating the biosynthetic arsenal of this bacterium. Promising efforts toward the application of B. subtilis strains and their natural products in areas of agriculture and medicine are underway. However, industrial-scale availability of these compounds is currently limited by low fermentation yields and challenging accessibility via synthesis, necessitating the development of genetically engineered strains and optimized cultivation processes. We hope that this review will attract renewed interest in this often-overlooked bacterium and its impressive biosynthetic skill set.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Peter Neubauer
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Matthias Gimpel
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|
5
|
Jin J, Hwang K, Joo JD, Han JH, Kim CY. Combination therapy of 7-O-succinyl macrolactin A tromethamine salt and temozolomide against experimental glioblastoma. Oncotarget 2017; 9:2140-2147. [PMID: 29416760 PMCID: PMC5788628 DOI: 10.18632/oncotarget.23295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
7-O-succinyl macrolactin A has shown anti-inflammatory, anti-angiogenesis, and anti-metastatic effects. It also exhibits strong suppression of tumor growth. In our previous study, we assessed the anti-neoplastic effects of 7-O-succinyl macrolactin A tromethamine salt (SMA salt) on a glioma cell line. Moreover, according to our data, SMA salt might be contributed to the inhibitory effects on migration and invasion, as well as a cytotoxic effect on the glioblastoma cell lines. In the present study, we investigated the anti-tumor effects of combination therapy with SMA salt and temozolomide (TMZ) in glioblastoma cell lines. The combination therapy affected cell viability significantly, decreasing in glioblastoma cell lines. In cell migration assays, combination therapy showed more inhibitory effects than TMZ in these cell lines. The tumor volume was significantly decreased in the combination group compared with both TMZ and control groups by using the orthotopic mouse model. The effects of combination therapy with SMA salt and TMZ attributed to the inhibition of migration, invasion activities and anti-tumor effects. SMA salt could be one of the promising candidates for combination therapy in clinical settings.
Collapse
Affiliation(s)
- Jun Jin
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea
| | - Jin-Deok Joo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Noh K, Kang ΨW. Calculation of a First-In-Man Dose of 7- O-Succinyl Macrolactin A Based on Allometric Scaling of Data from Mice, Rats, and Dogs. Biomol Ther (Seoul) 2017; 25:648-658. [PMID: 28274094 PMCID: PMC5685435 DOI: 10.4062/biomolther.2016.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
7-O-Succinyl macrolactin A (SMA) exerts several pharmacological effects including anti-bacterial, anti-inflammation, and anti-cancer activities. Recently, SMA has been extensively evaluated as an anti-cancer drug. Thus, the objectives of the present study were to characterise the pharmacokinetics of SMA via both non-compartmental and compartmental analysis in mice, rats, and dogs, and to derive an appropriate first-in-man dose based on allometric scaling of the animal data. The time courses of plasma SMA concentrations after intravenous administration to rats and dogs were analysed retrospectively, as were data collected after intraperitoneal SMA injection in mice. Pharmacokinetic parameters were estimated via both noncompartmental and compartmental analysis, and were correlated with body weight and/or the potential maximum life-span. The clearance and distribution volume of SMA in humans were predicted, and a first-in-man dose proposed. A two-compartment model best described the time courses of SMA plasma concentrations after a saturation elimination process was applied to fit the dataset obtained from rats. Incorporation of the maximum potential life-span during allometric scaling was required to improve the estimation of human clearance. The SMA clearance and the distribution volume in the steady state, in a 70-kg adult male, were estimated to be 30.6 L/h and 19.5 L, respectively. To meet the area under the curve (AUC) required for anti-tumour activity, a dose of 100 mg (∼1.5 mg/kg) was finally proposed as the first dose for a 70-kg human. Although toxicological profiles derived from non-clinical studies must be considered before any final decision is made, our work will facilitate clinical studies on SMA.
Collapse
Affiliation(s)
- Keumhan Noh
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ψ Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Kim M, Choi S, Noh K, Kim C, Kim E, Hwang JK, Kang W. Determination of panduratin A in rat plasma by HPLC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 2017; 137:151-154. [DOI: 10.1016/j.jpba.2017.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
|
8
|
Liu Z, Hou P, Liu L, Qian F. Characterization of metabolites of larotaxel in rat by liquid chromatography coupled with Q exactive high-resolution benchtop quadrupole orbitrap mass spectrometer. Xenobiotica 2017; 48:269-278. [DOI: 10.1080/00498254.2017.1297872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenzhen Liu
- Department of Medical Function, School of Medicine, Yangtze University, Jingzhou, China and
| | - Pengyi Hou
- Chromatography and Mass Spectrometry Division, Thermo Fisher Scientific, Shanghai, China
| | - Lian Liu
- Department of Medical Function, School of Medicine, Yangtze University, Jingzhou, China and
| | - Feng Qian
- Department of Medical Function, School of Medicine, Yangtze University, Jingzhou, China and
| |
Collapse
|
9
|
Quantitative determination of xanthorrhizol in rat plasma by HPLC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 2017; 132:56-59. [DOI: 10.1016/j.jpba.2016.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 11/23/2022]
|
10
|
Oh K, Baek MC, Kang W. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC–MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice. J Pharm Biomed Anal 2016; 129:332-338. [DOI: 10.1016/j.jpba.2016.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
|
11
|
Kim E, Kang W. Simultaneous determination of N 1 -acetyl sulfisoxazole and its metabolites, and relative bioavailability compare to sulfisoxazole in rats. J Pharm Biomed Anal 2016; 129:117-120. [DOI: 10.1016/j.jpba.2016.06.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 02/02/2023]
|