1
|
Goswami S, Mani R, Nunes J, Chiang CL, Zapolnik K, Hu E, Frissora F, Mo X, Walker LA, Yan P, Bundschuh R, Beaver L, Devine R, Tsai YT, Ventura A, Xie Z, Chen M, Lapalombella R, Walker A, Mims A, Larkin K, Grieselhuber N, Bennett C, Phelps M, Hertlein E, Behbehani G, Vasu S, Byrd JC, Muthusamy N. PP2A is a therapeutically targetable driver of cell fate decisions via a c-Myc/p21 axis in human and murine acute myeloid leukemia. Blood 2022; 139:1340-1358. [PMID: 34788382 PMCID: PMC8900275 DOI: 10.1182/blood.2020010344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.
Collapse
Affiliation(s)
- Swagata Goswami
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | | | - Jessica Nunes
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Chi-Ling Chiang
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Kevan Zapolnik
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Eileen Hu
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Frank Frissora
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH
| | - Logan A Walker
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI
| | - Pearlly Yan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Ralf Bundschuh
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
- Department of Physics, The Ohio State University, Columbus, OH; and
| | - Larry Beaver
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Raymond Devine
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Yo-Ting Tsai
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Ann Ventura
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Zhiliang Xie
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Min Chen
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Rosa Lapalombella
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Alison Walker
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Alice Mims
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Karilyn Larkin
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Nicole Grieselhuber
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Chad Bennett
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Mitch Phelps
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Erin Hertlein
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Gregory Behbehani
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sumithira Vasu
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Natarajan Muthusamy
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Xie Z, Chen M, Goswami S, Mani R, Wang D, Kulp SK, Coss CC, Schaaf LJ, Cui F, Byrd JC, Jennings RN, Schober KK, Freed C, Lewis S, Malbrue R, Muthusamy N, Bennett C, Kisseberth WC, Phelps MA. Pharmacokinetics and Tolerability of the Novel Non-immunosuppressive Fingolimod Derivative, OSU-2S, in Dogs and Comparisons with Data in Mice and Rats. AAPS JOURNAL 2020; 22:92. [PMID: 32676788 DOI: 10.1208/s12248-020-00474-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
Abstract
In this study, we characterized the pharmacokinetics of OSU-2S, a fingolimod-derived, non-immunosuppressive phosphatase activator, in mice, rats, and dogs, as well as tolerability and food effects in dogs. Across all species tested, plasma protein binding for OSU-2S was > 99.5%, and metabolic stability and hepatic intrinsic clearance were in the moderate range. OSU-2S did not significantly modulate CYP enzyme activity up until 50 μM, and Caco-2 data suggested low permeability with active efflux at 2 μM. Apparent oral bioavailability in mice was 16% and 69% at 10 and 50 mg/kg, respectively. In rats, bioavailability was 24%, 35%, and 28% at 10, 30, and 100 mg/kg, respectively, while brain/plasma ratio was 36 at 6-h post-dose at 30 mg/kg. In dogs, OSU-2S was well tolerated with oral capsule bioavailability of 27.5%. Plasma OSU-2S exposures increased proportionally over a 2.5-20 mg/kg dose range. After 4 weeks of 3 times weekly, oral administration (20 mg/kg), plasma AUClast (26.1 μM*h), and Cmax (0.899 μM) were nearly 2-fold greater than those after 1 week of dosing, and no food effects were observed. The elimination half-life (29.7 h), clearance (22.9 mL/min/kg), and plasma concentrations of repeated oral doses support a 3-times weekly dosing schedule in dogs. No significant CBC, serum biochemical, or histopathological changes were observed. OSU-2S has favorable oral PK properties similar to fingolimod in rodents and dogs and is well tolerated in healthy animals. This work supports establishing trials of OSU-2S efficacy in dogs with spontaneous tumors to guide its clinical development as a cancer therapeutic for human patients.
Collapse
Affiliation(s)
- Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA
| | - Swagata Goswami
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Rajes Mani
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Dasheng Wang
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA
| | - Chris C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Larry J Schaaf
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - John C Byrd
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ryan N Jennings
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Karsten K Schober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 448 VMAB, 1900 Coffey Rd., Columbus, Ohio, 43210, USA
| | - Carrie Freed
- University Laboratory Animal Resources, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie Lewis
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Raphael Malbrue
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Chad Bennett
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William C Kisseberth
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA. .,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 448 VMAB, 1900 Coffey Rd., Columbus, Ohio, 43210, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
3
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
4
|
Omar HA, Tolba MF, Hung JH, Al-Tel TH. OSU-2S/Sorafenib Synergistic Antitumor Combination against Hepatocellular Carcinoma: The Role of PKCδ/p53. Front Pharmacol 2016; 7:463. [PMID: 27965580 PMCID: PMC5127788 DOI: 10.3389/fphar.2016.00463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Background: Sorafenib (Nexavar®) is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices <1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and inhibition of HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusion: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity toward both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef UniversityBeni-Suef, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams UniversityCairo, Egypt; School of Pharmacy, Chapman University, IrvineCA, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science Tainan, Taiwan
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|