1
|
Orlandini S, Hancu G, Szabó ZI, Modroiu A, Papp LA, Gotti R, Furlanetto S. New Trends in the Quality Control of Enantiomeric Drugs: Quality by Design-Compliant Development of Chiral Capillary Electrophoresis Methods. Molecules 2022; 27:7058. [PMID: 36296650 PMCID: PMC9607418 DOI: 10.3390/molecules27207058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Capillary electrophoresis (CE) is a potent method for analyzing chiral substances and is commonly used in the enantioseparation and chiral purity control of pharmaceuticals from different matrices. The adoption of Quality by Design (QbD) concepts in analytical method development, optimization and validation is a widespread trend observed in various analytical approaches including chiral CE. The application of Analytical QbD (AQbD) leads to the development of analytical methods based on sound science combined with risk management, and to a well understood process clarifying the influence of method parameters on the analytical output. The Design of Experiments (DoE) method employing chemometric tools is an essential part of QbD-based method development, allowing for the simultaneous evaluation of experimental parameters as well as their interaction. In 2022 the International Council for Harmonization (ICH) released two draft guidelines (ICH Q14 and ICH Q2(R2)) that are intended to encourage more robust analytical procedures. The ICH Q14 guideline intends to harmonize the scientific approaches for analytical procedures' development, while the Q2(R2) document covers the validation principles for the use of analytical procedures including the recent applications that require multivariate statistical analyses. The aim of this review is to provide an overview of the new prospects for chiral CE method development applied for the enantiomeric purity control of pharmaceuticals using AQbD principles. The review also provides an overview of recent research (2012-2022) on the applicability of CE methods in chiral drug impurity profiling.
Collapse
Affiliation(s)
- Serena Orlandini
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Adriana Modroiu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Lajos-Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| |
Collapse
|
2
|
Recent Advances on Chiral Mobile Phase Additives: A Critical Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Application of Experimental Design Methodologies in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: A Review. Molecules 2021; 26:molecules26154681. [PMID: 34361834 PMCID: PMC8348688 DOI: 10.3390/molecules26154681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chirality is one of the major issues in pharmaceutical research and industry. Capillary electrophoresis (CE) is an interesting alternative to the more frequently used chromatographic techniques in the enantioseparation of pharmaceuticals, and is used for the determination of enantiomeric ratio, enantiomeric purity, and in pharmacokinetic studies. Traditionally, optimization of CE methods is performed using a univariate one factor at a time (OFAT) approach; however, this strategy does not allow for the evaluation of interactions between experimental factors, which may result in ineffective method development and optimization. In the last two decades, Design of Experiments (DoE) has been frequently employed to better understand the multidimensional effects and interactions of the input factors on the output responses of analytical CE methods. DoE can be divided into two types: screening and optimization designs. Furthermore, using Quality by Design (QbD) methodology to develop CE-based enantioselective techniques is becoming increasingly popular. The review presents the current use of DoE methodologies in CE-based enantioresolution method development and provides an overview of DoE applications in the optimization and validation of CE enantioselective procedures in the last 25 years. Moreover, a critical perspective on how different DoE strategies can aid in the optimization of enantioseparation procedures is presented.
Collapse
|
4
|
Perovani IS, Serpellone CO, de Oliveira ARM. An appraisal of experimental designs: Application to enantioselective capillary electromigration techniques. Electrophoresis 2021; 42:1726-1743. [PMID: 33544902 DOI: 10.1002/elps.202000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Enantioresolution processes are vital tools for investigating the enantioselectivities of chiral compounds. An analyst resolves to optimize enantioresolution conditions once they are determined. Generally, optimization is conducted by a one-factor-at-a-time (OFAT) approach. Although this approach may determine an adequate condition for the method, it does not often allow the estimation of the real optimum condition. Experimental designs are conducive for the optimization of enantioresolution methods via capillary electromigration techniques (CETs). They can efficiently extract information from the behavior of a method and enable the estimation of the real optimum condition. Furthermore, the application of the analytical quality by design (AQbD) approach to the development of CET-based enantioselective methods is a trend. This article (i) offers an overview of the application of experimental designs to the development of enantioselective methods from 2015 to mid-2020, (ii) reveals the experimental designs that are presently employed in CET-based enantioresolutions, and (iii) offers a critical point of view on how the different experimental designs can aid the optimization of enantioresolution processes by considering the method parameters.
Collapse
Affiliation(s)
- Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil
| | - Carolina Oliveira Serpellone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, Araraquara, Sao Paulo, 14800-900, Brazil
| |
Collapse
|
5
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Zhu Q, Scriba GK. Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods – recent developments. J Pharm Biomed Anal 2018; 147:425-438. [DOI: 10.1016/j.jpba.2017.06.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
8
|
Wuethrich A, Quirino JP. Derivatisation for separation and detection in capillary electrophoresis (2015-2017). Electrophoresis 2017; 39:82-96. [PMID: 28758685 DOI: 10.1002/elps.201700252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/01/2023]
Abstract
Derivatisation is an integrated part of many analytical workflows to enable separation and detection of the analytes. In CE, derivatisation is adapted in the four modes of pre-capillary, in-line, in-capillary, and post-capillary derivatisation. In this review, we discuss the progress in derivatisation from February 2015 to May 2017 from multiple points of view including sections about the derivatisation modes, derivatisation to improve the analyte separation and analyte detection. The advancements in derivatisation procedures, novel reagents, and applications are covered. A table summarising the 46 reviewed articles with information about analyte, sample, derivatisation route, CE method and method sensitivity is provided.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
9
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013-2015). Electrophoresis 2016; 37:1591-608. [DOI: 10.1002/elps.201600058] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/07/2022]
|