1
|
Yeo J, Kang J, Kim H, Moon C. A Critical Overview of HPLC-MS-Based Lipidomics in Determining Triacylglycerol and Phospholipid in Foods. Foods 2023; 12:3177. [PMID: 37685110 PMCID: PMC10486615 DOI: 10.3390/foods12173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
With the current advancement in mass spectrometry (MS)-based lipidomics, the knowledge of lipidomes and their diverse roles has greatly increased, enabling a deeper understanding of the action of bioactive lipid molecules in plant- and animal-based foods. This review provides in-depth information on the practical use of MS techniques in lipidomics, including lipid extraction, adduct formation, MS analysis, data processing, statistical analysis, and bioinformatics. Moreover, this contribution demonstrates the effectiveness of MS-based lipidomics for identifying and quantifying diverse lipid species, especially triacylglycerols and phospholipids, in foods. Further, it summarizes the wide applications of MS-based lipidomics in food science, such as for assessing food processing methods, detecting food adulteration, and measuring lipid oxidation in foods. Thus, MS-based lipidomics may be a useful method for identifying the action of individual lipid species in foods.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.K.); (H.K.); (C.M.)
| | | | | | | |
Collapse
|
2
|
Wang N, Liu H, Tian M, Liang J, Sun W, Zhang L, Pei L, Liu K, Sun S, Wu J, Gao Y, Xu Y, Wang Y, Song B. A Nomogram That Includes Neutrophils and High-Density Lipoprotein Cholesterol Can Predict the Prognosis of Acute Ischaemic Stroke. Front Neurol 2022; 13:827279. [PMID: 35280284 PMCID: PMC8914087 DOI: 10.3389/fneur.2022.827279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Lipids are implicated in inflammatory responses affecting acute ischaemic stroke prognosis. Therefore, we aimed to develop a predictive model that considers neutrophils and high-density lipoprotein cholesterol to predict its prognosis. This prospective study enrolled patients with acute ischaemic stroke within 24 h of onset between January 2015 and December 2017. The main outcome was a modified Rankin Scale score ≥3 at the 90th day of follow-up. Patients were divided into training and testing sets. The training set was divided into four states according to the median of neutrophils and high-density lipoprotein cholesterol levels in all patients. Through binary logistic regression analysis, the relationship between factors and prognosis was determined. A nomogram based on the results was developed; its predictive value was evaluated through internal and external validations. Altogether, 1,090 patients were enrolled with 872 (80%) and 218 (20%) in the training and testing sets, respectively. In the training set, the major outcomes occurred in 24 (10.4%), 24 (11.6%), 37 (17.2%), and 49 (22.3%) in states 1–4, respectively (P = 0.002). Validation of calibration and decision curve analyses showed that the nomogram showed better performance. The internal and external testing set receiver operating characteristics verified the predictive value [area under the curve = 0.794 (0.753–0.834), P < 0.001, and area under the curve = 0.973 (0.954–0.992), P < 0.001, respectively]. A nomogram that includes neutrophils and high-density lipoprotein cholesterol can predict the prognosis of acute ischaemic stroke, thus providing us with an effective visualization tool.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengke Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxian Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luyang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lulu Pei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shilei Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yilong Wang
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Bo Song
| |
Collapse
|
3
|
Pizzuti V, Abruzzo PM, Chatgilialoglu A, Zia S, Marrazzo P, Petrocelli G, Zannini C, Marchionni C, Poggi P, Simonazzi G, Canaider S, Alviano F, Facchin F, Bonsi L. A Tailored Lipid Supplement Restored Membrane Fatty Acid Composition and Ameliorates In Vitro Biological Features of Human Amniotic Epithelial Cells. J Clin Med 2022; 11:jcm11051236. [PMID: 35268327 PMCID: PMC8911266 DOI: 10.3390/jcm11051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs. The addition to the basal culture medium of a chemically defined and animal-free tailored lipid supplement, namely Refeed®, partially restored the membrane fatty acid signature of hAECs. Although the amelioration of the membrane composition did not prolong hAECs culture lifespan, Refeed® influenced cell morphology, counteracted the onset of senescence, and increased the migratory capacity as well as the ability of hAECs to inhibit Peripheral Blood Mononuclear Cell (PBMC) proliferation. This study provides new information on hAEC features during culture passages and demonstrates that the maintenance of the membrane fatty acid signature preserved higher cell quality during in vitro expansion, suggesting the use of lipid supplementation for SC expansion in cell-based therapies.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Experimental, Diagnostic and Specialty Medicine, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | | | | | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Giovannamaria Petrocelli
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-ELDOR Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Paola Poggi
- Remembrane S.r.l., 40026 Imola, Italy; (A.C.); (P.P.)
| | - Giuliana Simonazzi
- Obstetric Unit, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi, University of Bologna, 40126 Bologna, Italy;
| | - Silvia Canaider
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Correspondence:
| | - Federica Facchin
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| |
Collapse
|
4
|
PANG XT, ZHANG YY, LENG YF, YAO Y, Zhang R, WANG DW, XU X, SUN ZL. Metabolomics study of biochemical changes in the serum and articular synovium tissue of moxibustion in rats with collagen-induced arthritis. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
6
|
Zhang W, Huo T, Li A, Wu X, Feng C, Liu J, Jiang H. Identification of neurotoxicity markers induced by realgar exposure in the mouse cerebral cortex using lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121567. [PMID: 32061421 DOI: 10.1016/j.jhazmat.2019.121567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Realgar is a traditional Chinese medicine containing arsenic and has neurotoxicity. This study used realgar exposure mice model, neurobehavioral tests, analytical chemistry, molecular biology and nontargeted lipidomics to explore the mechanism of realgar damages the nervous system. The arsenic contained in realgar passed through the BBB and accumulated in the brain. Neurons, synapses and myelin showed abnormal changes in the cerebral cortex. The number of autophagosomes were incresed as well as levels of MDA, Lp-PLA2, and cPLA2 but the CAT level was significant reduced. Finally, the cognition and memory of mice were decreased. Nontargeted lipidomics detected 34 lipid subclasses including 1603 lipid molecules. The levels of the LPC and LPE were significantly increased. Under the condition of variable importance for the projection (VIP)>1 and P < 0.05, only 28 lipid molecules satisfied the criteria. The lipid molecular markers SM (d36:2), PE (18:2/22:6) and PE (36:3) which were filtered by receiver operating characteristic (ROC) curve (AUC>0.8 or AUC<0.2) were used to identify the neurotoxicity induced by realgar. Therefore, realgar induces neurotoxicity through exacerbating oxidative damage and lipid dysfunction. Providing research basis for the clinical diagnosis and treatment of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinyu Wu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
7
|
Hua YL, Ma Q, Zhang XS, Jia YQ, Peng XT, Yao WL, Ji P, Hu JJ, Wei YM. Pulsatilla Decoction Can Treat the Dampness-Heat Diarrhea Rat Model by Regulating Glycerinphospholipid Metabolism Based Lipidomics Approach. Front Pharmacol 2020; 11:197. [PMID: 32194420 PMCID: PMC7064006 DOI: 10.3389/fphar.2020.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ethnopharmacological Relevance Diarrhea is a major medical problem in clinical practice. According to the theory of traditional Chinese medicine (TCM), different types of diarrhea should be treated with different TCM formulations based on the targeted medical condition. Dampness-heat diarrhea (DHD) is a serious diarrheal disease and Pulsatilla decoction (PD), a TCM, has been found effective against DHD. Objective The aim of this study was to clarify the mechanism of action of PD in DHD using an untargeted lipidomics strategy. Materials and Methods Wistar rats were randomized to four groups, including the control group, model group, PD groups and self-healing group. The PD groups were given a daily intragastric gavage of PD at doses of 3.76 g/kg. The rat model of DHD established by such complex factors as high-sugar and high-fat diet, improper diet, high temperature and humidity environment, drinking and intraperitoneal injection of Escherichia coli., which imitated the inducing conditions of DHD. Then the clinical symptoms and signs, blood routine, serum inflammatory cytokines levels and the histopathological changes of main organs were detected and observed to evaluate DHD model and therapeutic effect of PD. Lipid biomarkers of DHD were selected by comparing the control and model groups with the colon lipidomics technology and an ultra-high performance liquid chromatography (UHPLC) coupled with Q Exactive plus mass analyzer. Multivariate statistical analysis and pattern recognition were employed to examine different lipids within the colon of PD-treated rats. Results The clinical symptoms and signs of the model rats were consistent with the diagnostic criteria of DHD. After treatment with PD, the clinical symptoms and signs of the rats with DHD were improved; the indexes of blood routine and inflammatory cytokines levels tended to be normal. The lipidomics profile of the model group were evidently disordered when compared to the control group. A total of 42 significantly altered lipids between the model-control groups were identified by multivariate statistical analysis. DHD may result from such lipid disorders which are related to glycerophospholipid metabolism, arachidonic acid (AA) metabolism, and sphingolipid metabolism. After PD treatment, the lipidomic profiles of the disorders tended to recover when compared to the model group. Twenty lipid molecules were identified and some glycerophospholipids and AA levels returned close to the normal level. Conclusion Glycerophospholipid metabolism may play an important role in the treatment of dampness-heat induced diarrhea using PD.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qi Ma
- Institute of Animal Science, Southwestern University, Chongqing, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ya-Qian Jia
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiao-Ting Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Kytikova OY, Perelman JM, Novgorodtseva TP, Denisenko YK, Kolosov VP, Antonyuk MV, Gvozdenko TA. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res 2020; 2020:8906968. [PMID: 32395125 PMCID: PMC7201810 DOI: 10.1155/2020/8906968] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
The complexity of the pathogenetic mechanisms of the development of chronic inflammation in asthma determines its heterogeneity and insufficient treatment effectiveness. Nuclear transcription factors, which include peroxisome proliferator-activated receptors, that is, PPARs, play an important role in the regulation of initiation and resolution of the inflammatory process. The ability of PPARs to modulate not only lipid homeostasis but also the activity of the inflammatory response makes them an important pathogenetic target in asthma therapy. At present, special attention is focused on natural (polyunsaturated fatty acids (PUFAs), endocannabinoids, and eicosanoids) and synthetic (fibrates, thiazolidinediones) PPAR ligands and the study of signaling mechanisms involved in the implementation of their anti-inflammatory effects in asthma. This review summarizes current views on the structure and function of PPARs, as well as their participation in the pathogenesis of chronic inflammation in asthma. The potential use of PPAR ligands as therapeutic agents for treating asthma is under discussion.
Collapse
Affiliation(s)
- Oxana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Viktor P. Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
9
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
10
|
Kytikova O, Novgorodtseva T, Denisenko Y, Antonyuk M, Gvozdenko T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. ACTA ACUST UNITED AC 2019; 55:medicina55060284. [PMID: 31216723 PMCID: PMC6631965 DOI: 10.3390/medicina55060284] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
Asthma is one of the most important medical and social problems of our time due to the prevalence and the complexity of its treatment. Chronic inflammation that is characteristic of asthma is accompanied by bronchial obstruction, which involves various lipid mediators produced from n-6 and n-3 polyunsaturated fatty acids (PUFAs). The review is devoted to modern ideas about the PUFA metabolites—eicosanoids (leukotrienes, prostaglandins, thromboxanes) and specialized pro-resolving lipid mediators (SPMs) maresins, lipoxins, resolvins, protectins. The latest advances in clinical lipidomics for identifying and disclosing the mechanism of synthesis and the biological action of SPMs have been given. The current views on the peculiarities of the inflammatory reaction in asthma and the role of highly specialized metabolites of arachidonic, eicosapentaenoic and docosahexaenoic acids in this process have been described. The possibility of using SPMs as therapeutic agents aimed at controlling the resolution of inflammation in asthma is discussed.
Collapse
Affiliation(s)
- Oxana Kytikova
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Marina Antonyuk
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Gvozdenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| |
Collapse
|
11
|
Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer Metastasis Rev 2019; 37:269-277. [PMID: 29934821 DOI: 10.1007/s10555-018-9747-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been noted that inflammatory were intimately associated with the development and progression of hepatocellular carcinoma (HCC). Eicosanoids derived from arachidonic acid play crucial roles in chronic inflammation. Accordingly, there is an intricate relationship between eicosanoids and HCC, being supported by the epidemiological, clinical, and basic science studies. Herein, we intend to provide bioanalytical insights into the role of eicosanoids in HCC progression, from cell proliferation, angiogenesis migration, to apoptosis. Also, the analytical methods and biochemistry of eicosanoids are described.
Collapse
|
12
|
Nieman DC, Gillitt ND, Chen GY, Zhang Q, Sakaguchi CA, Stephan EH. Carbohydrate intake attenuates post-exercise plasma levels of cytochrome P450-generated oxylipins. PLoS One 2019; 14:e0213676. [PMID: 30883596 PMCID: PMC6422332 DOI: 10.1371/journal.pone.0213676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Oxylipins are bioactive oxidation products derived from n-6 and n-3 polyunsaturated fatty acids (PUFAs) in the linoleic acid and α-linolenic desaturation pathways. Purpose This study determined if carbohydrate intake during prolonged and intensive cycling countered post-exercise increases in n-6 and n-3 PUFA-derived oxylipins. Methods The research design utilized a randomized, crossover, counterbalanced approach with cyclists (N = 20, overnight fasted state, 7:00 am start) who engaged in four 75-km time trials while ingesting two types of bananas (Cavendish, Mini-yellow), a 6% sugar beverage, and water only. Carbohydrate intake was set at 0.2 g/kg every 15 minutes, and blood samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise. Oxylipins were measured with a targeted liquid chromatography-multiple reaction monitoring mass spectrometric method. Results Significant time effects and substantial fold-increases (immediately post-exercise/pre-exercise) were measured for plasma levels of arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and 43 of 45 oxylipins. Significant interaction effects (4 trials x 8 time points) were found for plasma ARA (P<0.001) and DHA (P<0.001), but not EPA (P = 0.255), with higher post-exercise values found in the water trial compared to the carbohydrate trials. Significant interaction effects were also measured for 12 of 45 oxylipins. The data supported a strong exercise-induced increase in plasma levels of these oxylipins during the water trial, with carbohydrate ingestion (both bananas types and the sugar beverage) attenuating oxylipin increases, especially those (9 of 12) generated from the cytochrome P-450 (CYP) enzyme system. These trials differences were especially apparent within the first three hours of recovery from the 75-km cycling bout. Conclusions Prolonged and intensive exercise evoked a transient but robust increase in plasma levels of oxylipins, with a significant attenuation effect linked to acute carbohydrate ingestion for 28% of these, especially those generated through the CYP enzyme system. Trial registration ClinicalTrials.gov, U.S. National Institutes of Health, NCT02994628
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| | - Nicholas D. Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Guan-Yuan Chen
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Camila A. Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ella H. Stephan
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina-Chapel Hill, NC, United States of America
| |
Collapse
|
13
|
Charkoftaki G, Thompson DC, Golla JP, Garcia-Milian R, Lam TT, Engel J, Vasiliou V. Integrated multi-omics approach reveals a role of ALDH1A1 in lipid metabolism in human colon cancer cells. Chem Biol Interact 2019; 304:88-96. [PMID: 30851239 DOI: 10.1016/j.cbi.2019.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06250, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA; Yale MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, CT, 06510, USA
| | - Jasper Engel
- Biometris, Wageningen University & Research, Wagenigen, the Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Nieman DC, Lila MA, Gillitt ND. Immunometabolism: A Multi-Omics Approach to Interpreting the Influence of Exercise and Diet on the Immune System. Annu Rev Food Sci Technol 2019; 10:341-363. [PMID: 30633566 DOI: 10.1146/annurev-food-032818-121316] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunometabolism is an evolving field of scientific endeavor that merges immunology and metabolism and has provided valuable context when evaluating the influence of dietary interventions on exercise-induced immune dysfunction. Metabolomics, lipidomics, and proteomics provide a system-wide view of the metabolic response to exercise by simultaneously measuring and identifying a large number of small-molecule metabolites, lipids, and proteins. Many of these are involved with immune function and regulation and are sensitive to dietary influences, especially acute carbohydrate ingestion from either sugar beverages or fruits such as bananas. Emerging evidence using large multi-omics data sets supports the combined intake of fruit sugars and phytochemicals by athletes during heavy exertion as an effective strategy to improve metabolic recovery, augment viral defense, and counter postexercise inflammation and immune dysfunction at the cell level. Multi-omics methodologies have given investigators new outcome targets to assess the efficacy of various dietary interventions for physiologically stressed athletes.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Department of Health and Exercise Science, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA;
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Nicholas D Gillitt
- Dole Nutrition Research Laboratory, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
15
|
Yang Y, Yang J, Zhang H, Mo C, Zhou T, Tan W. The investigation of protective effects of isosteviol sodium on cerebral ischemia by metabolomics approach using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2018; 32:e4350. [DOI: 10.1002/bmc.4350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Yang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Jina Yang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Hao Zhang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Canlong Mo
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Ting Zhou
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences; Guangdong University of Technology; Guangzhou China
| |
Collapse
|
16
|
Chen Y, Ma Z, Shen X, Li L, Zhong J, Min LS, Xu L, Li H, Zhang J, Dai L. Serum Lipidomics Profiling to Identify Biomarkers for Non-Small Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5276240. [PMID: 30175133 PMCID: PMC6106807 DOI: 10.1155/2018/5276240] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/08/2018] [Indexed: 12/22/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, which ranks top in both incidence and mortality. To broaden our understanding of the lipid metabolic alterations in NSCLC and to identify potential biomarkers for early diagnosis, we performed nontargeted lipidomics analysis in serum from 66 early-stage NSCLC, 40 lung benign disease patients (LBD), and 40 healthy controls (HC) using Ultrahigh Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-Q-TOF/MS). The identified biomarker candidates of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) were further externally validated in a cohort including 30 early-stage NSCLC, 30 LBD, and 30 HC by a targeted lipidomic analysis. We observed a significantly altered lipid metabolic profile in early-stage NSCLC and identified panels of PCs and PEs to distinguish NSCLC patients and HC. The levels of PCs and PEs were found to be dysregulated in glycerophospholipid metabolism, which was the top altered pathway in early-stage NSCLC. Receiver operating characteristic (ROC) curve analysis revealed that panels of PCs and PEs exhibited good performance in differentiating early-stage NSCLC and HC. The levels of PE(16:0/16:1), PE(16:0/18:3), PE(16:0/18:2), PE(18:0/16:0), PE(17:0/18:2), PE(18:0/17:1), PE(17:0/18:1), PE(20:5/16:0), PE(18:0/18:1), PE(18:1/20:4), PE(18:0/20:3), PC(15:0/18:1), PC(16:1/20:5), and PC(18:0/20:1) in early-stage NSCLC were significantly increased compared with HC (p<0.05). Overall, our study has thus highlighted the power of using comprehensive lipidomic approaches to identify biomarkers and underlying mechanisms in NSCLC.
Collapse
Affiliation(s)
- Yingrong Chen
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Xiongrong Shen
- Departments of Clinical Pharmacology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Liqin Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Jing Zhong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Li Shan Min
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Limin Xu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Hongwei Li
- Cardiothoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Jianbin Zhang
- Cardiothoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Licheng Dai
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| |
Collapse
|
17
|
Yang Y, Zhong Q, Zhang H, Mo C, Yao J, Huang T, Zhou T, Tan W. Lipidomics study of the protective effects of isosteviol sodium on stroke rats using ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 157:145-155. [PMID: 29800902 DOI: 10.1016/j.jpba.2018.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Isosteviol sodium (STV-Na) was reported to possess significant protective effects on ischemic stroke in recent years. However, the protective mechanism of STV-Na against stroke was still unclear. In this work, an untargeted lipidomics approach based on the ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry (UHSFC-IT-TOF/MS) was employed to investigate the lipid profiles of stroke rats with STV-Na treatment for the first time. The possible mechanism of STV-Na was further elucidated. The UHSFC-IT-TOF/MS-based method achieved a fast separation of various lipids within 9 min with a qualified repeatability. Multivariate statistical analysis was used to show differences in lipid profiles induced by stroke and STV-Na treatment. The results showed a clear separation of the model group and the sham group, with the STV-Na group as well as EDA group located much closer to the sham group than the model group, which was consistent with the results of physiological and pathological assays, indicating the protective effects of STV-Na. Fifteen differential lipids that presented significant differences between the sham group and the model group were screened and identified. With the treatment of STV-Na, 15 differential lipids in stroke rats showed a tendency to the normal levels. Among them, 6 lipids were significantly reversed to the normal levels by STV-Na. The results of pathway analysis suggested the protective effects of STV-Na might be related to the regulation of several metabolic pathways including glycerophospholipid metabolism, arachidonic acid metabolism and sphingolipid metabolism. This work demonstrated that the UHSFC-IT-TOF/MS-based lipidomics profiling method was a useful tool to investigate the protective effects of STV-Na against stroke.
Collapse
Affiliation(s)
- Yang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qisheng Zhong
- Shimadzu (China) Corporation, Guangzhou branch, 510010, China
| | - Hao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Canlong Mo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinting Yao
- Shimadzu (China) Corporation, Guangzhou branch, 510010, China
| | - Taohong Huang
- Shimadzu (China) Corporation, Shanghai branch, 200233, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Yang Y, Zhong Q, Mo C, Zhang H, Zhou T, Tan W. Determination of endogenous inflammation-related lipid mediators in ischemic stroke rats using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2017; 409:6537-6547. [DOI: 10.1007/s00216-017-0600-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
|
19
|
|
20
|
Nieman DC, Mitmesser SH. Potential Impact of Nutrition on Immune System Recovery from Heavy Exertion: A Metabolomics Perspective. Nutrients 2017; 9:nu9050513. [PMID: 28524103 PMCID: PMC5452243 DOI: 10.3390/nu9050513] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
This review describes effective and ineffective immunonutrition support strategies for the athlete, with a focus on the benefits of carbohydrates and polyphenols as determined from metabolomics-based procedures. Athletes experience regular cycles of physiological stress accompanied by transient inflammation, oxidative stress, and immune perturbations, and there are increasing data indicating that these are sensitive to nutritional influences. The most effective nutritional countermeasures, especially when considered from a metabolomics perspective, include acute and chronic increases in dietary carbohydrate and polyphenols. Carbohydrate supplementation reduces post-exercise stress hormone levels, inflammation, and fatty acid mobilization and oxidation. Ingestion of fruits high in carbohydrates, polyphenols, and metabolites effectively supports performance, with added benefits including enhancement of oxidative and anti-viral capacity through fruit metabolites, and increased plasma levels of gut-derived phenolics. Metabolomics and lipidomics data indicate that intensive and prolonged exercise is associated with extensive lipid mobilization and oxidation, including many components of the linoleic acid conversion pathway and related oxidized derivatives called oxylipins. Many of the oxylipins are elevated with increased adiposity, and although low in resting athletes, rise to high levels during recovery. Future targeted lipidomics-based studies will help discover whether n-3-polyunsaturated fatty acid (n-3-PUFA) supplementation enhances inflammation resolution in athletes post-exercise.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | | |
Collapse
|
21
|
Nakajima M, Nagahashi M, Rashid OM, Takabe K, Wakai T. The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumour Biol 2017; 39:1010428317699133. [PMID: 28381169 DOI: 10.1177/1010428317699133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elucidating the interaction between cancer and non-cancer cells, such as blood vessels, immune cells, and other stromal cells, in the tumor microenvironment is imperative in understanding the mechanisms underlying cancer progression and metastasis, which is expected to lead to the development of new therapeutics. Sphingosine-1-phosphate is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis/lymphangiogenesis, and immune responsiveness, which are all factors involved in cancer progression. Sphingosine-1-phosphate is generated inside cancer cells by sphingosine kinases and then exported into the tumor microenvironment. Although sphingosine-1-phosphate is anticipated to play an important role in the tumor microenvironment and cancer progression, determining sphingosine-1-phosphate levels in the tumor microenvironment has been difficult due to a lack of established methods. We have recently developed a method to measure sphingosine-1-phosphate levels in the interstitial fluid that bathes cancer cells in the tumor microenvironment, and reported that high levels of sphingosine-1-phosphate exist in the tumor interstitial fluid. Importantly, sphingosine-1-phosphate can be secreted from cancer cells and non-cancer components such as immune cells and vascular/lymphatic endothelial cells in the tumor microenvironment. Furthermore, sphingosine-1-phosphate affects both cancer and non-cancer cells in the tumor microenvironment promoting cancer progression. Here, we review the roles of sphingosine-1-phosphate in the interaction between cancer and non-cancer cells in tumor microenvironment, and discuss future possibilities for targeted therapies against sphingosine-1-phosphate signaling for cancer patients.
Collapse
Affiliation(s)
- Masato Nakajima
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masayuki Nagahashi
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Omar M Rashid
- 2 Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Hospital, Fort Lauderdale, FL, USA.,3 Massachusetts General Hospital, Boston, MA, USA.,4 Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kazuaki Takabe
- 5 Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,6 Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Toshifumi Wakai
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
22
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
23
|
Yang K, Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem Sci 2016; 41:954-969. [PMID: 27663237 DOI: 10.1016/j.tibs.2016.08.010] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022]
Abstract
Lipidomics is a newly emerged discipline that studies cellular lipids on a large scale based on analytical chemistry principles and technological tools, particularly mass spectrometry. Recently, techniques have greatly advanced and novel applications of lipidomics in the biomedical sciences have emerged. This review provides a timely update on these aspects. After briefly introducing the lipidomics discipline, we compare mass spectrometry-based techniques for analysis of lipids and summarize very recent applications of lipidomics in health and disease. Finally, we discuss the status of the field, future directions, and advantages and limitations of the field.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA; College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
24
|
Apaya MK, Chang MT, Shyur LF. Phytomedicine polypharmacology: Cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol Ther 2016; 162:58-68. [PMID: 26969215 DOI: 10.1016/j.pharmthera.2016.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrative approaches in cancer therapy have recently been extended beyond the induction of cytotoxicity to controlling the tumor microenvironment and modulating inflammatory cascades and pathways such as lipid mediator biosynthesis and their dynamics. Profiling of important lipid messengers, such as oxylipins, produced as part of the physiological response to pharmacological stimuli, provides a unique opportunity to explore drug pharmacology and the possibilities for molecular management of cancer physiopathology. Whereas single targeted chemotherapeutic drugs commonly lack efficacy and invoke drug resistance and/or adverse effects in cancer patients, traditional herbal medicines are seen as bright prospects for treating complex diseases, such as cancers, in a systematic and holistic manner. Understanding the molecular mechanisms of traditional medicine and its bioactive chemical constituents may aid the modernization of herbal remedies and the discovery of novel phytoagents for cancer management. In this review, systems-based polypharmacology and studies to develop multi-target drugs or leads from phytomedicines and their derived natural products that may overcome the problems of current anti-cancer drugs, are proposed and summarized.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Frohnert BI, Rewers MJ. Metabolomics in childhood diabetes. Pediatr Diabetes 2016; 17:3-14. [PMID: 26420304 PMCID: PMC4703499 DOI: 10.1111/pedi.12323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022] Open
Abstract
Recent increases in the incidence of both type 1 (T1D) and type 2 diabetes (T2D) in children and adolescents point to the importance of environmental factors in the development of these diseases. Metabolomic analysis explores the integrated response of the organism to environmental changes. Metabolic profiling can identify biomarkers that are predictive of disease incidence and development, potentially providing insight into disease pathogenesis. This review provides an overview of the role of metabolomic analysis in diabetes research and summarizes recent research relating to the development of T1D and T2D in children.
Collapse
Affiliation(s)
- Brigitte I Frohnert
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CO 80045 USA
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CO 80045 USA
| |
Collapse
|
26
|
Visioli F. Lipidomics to Assess Omega 3 Bioactivity. J Clin Med 2015; 4:1753-60. [PMID: 26371049 PMCID: PMC4600157 DOI: 10.3390/jcm4091753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
How can we resolve the conflict between the strong epidemiological evidence pointing to the usefulness of fish—and, thus, omega 3—consumption with the debacle of supplementation trials? One potential explanation is that the null results obtained thus far are the consequences of ill-contrived investigations that do not allow us to conclude on the effects (or lack thereof) of omega 3 fatty acid supplementation. One potential solution is through the use of lipidomics, which should prove very useful to screen suitable patients and to correlate plasma (or red blood cells, or whole blood, or phospholipid) fatty acid profile with outcomes. This has never been done in omega 3 trials. The wise use of lipidomics should be essential part of future omega 3 trials and would help in untangling this current riddle.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Via 8 Febbraio, 2-35122 Padova, Italy.
| |
Collapse
|