Miyamoto T, Homma H. Detection and quantification of d-amino acid residues in peptides and proteins using acid hydrolysis.
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017;
1866:775-782. [PMID:
29292238 DOI:
10.1016/j.bbapap.2017.12.010]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Biomolecular homochirality refers to the assumption that amino acids in all living organisms were believed to be of the l-configuration. However, free d-amino acids are present in a wide variety of organisms and d-amino acid residues are also found in various peptides and proteins, being generated by enzymatic or non-enzymatic isomerization. In mammals, peptides and proteins containing d-amino acids have been linked to various diseases, and they act as novel disease biomarkers. Analytical methods capable of precisely detecting and quantifying d-amino acids in peptides and proteins are therefore important and useful, albeit their difficulty and complexity. Herein, we reviewed conventional analytical methods, especially 0h extrapolating method, and the problems of this method. For the solution of these problems, we furthermore described our recently developed, sensitive method, deuterium-hydrogen exchange method, to detect innate d-amino acid residues in peptides and proteins, and its applications to sample ovalbumin. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse